41 research outputs found

    Chromatin Organization in Sperm May Be the Major Functional Consequence of Base Composition Variation in the Human Genome

    Get PDF
    Chromatin in sperm is different from that in other cells, with most of the genome packaged by protamines not nucleosomes. Nucleosomes are, however, retained at some genomic sites, where they have the potential to transmit paternal epigenetic information. It is not understood how this retention is specified. Here we show that base composition is the major determinant of nucleosome retention in human sperm, predicting retention very well in both genic and non-genic regions of the genome. The retention of nucleosomes at GC-rich sequences with high intrinsic nucleosome affinity accounts for the previously reported retention at transcription start sites and at genes that regulate development. It also means that nucleosomes are retained at the start sites of most housekeeping genes. We also report a striking link between the retention of nucleosomes in sperm and the establishment of DNA methylation-free regions in the early embryo. Taken together, this suggests that paternal nucleosome transmission may facilitate robust gene regulation in the early embryo. We propose that chromatin organization in the male germline, rather than in somatic cells, is the major functional consequence of fine-scale base composition variation in the human genome. The selective pressure driving base composition evolution in mammals could, therefore, be the need to transmit paternal epigenetic information to the zygote

    Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes

    No full text
    This work demonstrates the chiral-induced spin selectivity effect for inorganic copper oxide films and exploits it to enhance the chemical selectivity in electrocatalytic water splitting. Chiral CuO films are electrodeposited on a polycrystalline Au substrate, and their spin filtering effect on electrons is demonstrated using Mott polarimetry analysis of photoelectrons. CuO is known to act as an electrocatalyst for the oxygen evolution reaction; however, it also generates side products such as H 2 O 2 . We show that chiral CuO is selective for O 2 ; H 2 O 2 generation is strongly suppressed on chiral CuO but is present with achiral CuO. The selectivity is rationalized in terms of the electron spin-filtering properties of the chiral CuO and the spin constraints for the generation of triplet oxygen. These findings represent an important step toward the development of all-inorganic chiral materials for electron spin filtering and the creation of efficient, spin-selective (photo)electrocatalysts for water splitting
    corecore