527 research outputs found

    NAM: Non-Adversarial Unsupervised Domain Mapping

    Full text link
    Several methods were recently proposed for the task of translating images between domains without prior knowledge in the form of correspondences. The existing methods apply adversarial learning to ensure that the distribution of the mapped source domain is indistinguishable from the target domain, which suffers from known stability issues. In addition, most methods rely heavily on `cycle' relationships between the domains, which enforce a one-to-one mapping. In this work, we introduce an alternative method: Non-Adversarial Mapping (NAM), which separates the task of target domain generative modeling from the cross-domain mapping task. NAM relies on a pre-trained generative model of the target domain, and aligns each source image with an image synthesized from the target domain, while jointly optimizing the domain mapping function. It has several key advantages: higher quality and resolution image translations, simpler and more stable training and reusable target models. Extensive experiments are presented validating the advantages of our method.Comment: ECCV 201

    Variational Deep Semantic Hashing for Text Documents

    Full text link
    As the amount of textual data has been rapidly increasing over the past decade, efficient similarity search methods have become a crucial component of large-scale information retrieval systems. A popular strategy is to represent original data samples by compact binary codes through hashing. A spectrum of machine learning methods have been utilized, but they often lack expressiveness and flexibility in modeling to learn effective representations. The recent advances of deep learning in a wide range of applications has demonstrated its capability to learn robust and powerful feature representations for complex data. Especially, deep generative models naturally combine the expressiveness of probabilistic generative models with the high capacity of deep neural networks, which is very suitable for text modeling. However, little work has leveraged the recent progress in deep learning for text hashing. In this paper, we propose a series of novel deep document generative models for text hashing. The first proposed model is unsupervised while the second one is supervised by utilizing document labels/tags for hashing. The third model further considers document-specific factors that affect the generation of words. The probabilistic generative formulation of the proposed models provides a principled framework for model extension, uncertainty estimation, simulation, and interpretability. Based on variational inference and reparameterization, the proposed models can be interpreted as encoder-decoder deep neural networks and thus they are capable of learning complex nonlinear distributed representations of the original documents. We conduct a comprehensive set of experiments on four public testbeds. The experimental results have demonstrated the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201

    OneGAN: Simultaneous Unsupervised Learning of Conditional Image Generation, Foreground Segmentation, and Fine-Grained Clustering

    Full text link
    We present a method for simultaneously learning, in an unsupervised manner, (i) a conditional image generator, (ii) foreground extraction and segmentation, (iii) clustering into a two-level class hierarchy, and (iv) object removal and background completion, all done without any use of annotation. The method combines a Generative Adversarial Network and a Variational Auto-Encoder, with multiple encoders, generators and discriminators, and benefits from solving all tasks at once. The input to the training scheme is a varied collection of unlabeled images from the same domain, as well as a set of background images without a foreground object. In addition, the image generator can mix the background from one image, with a foreground that is conditioned either on that of a second image or on the index of a desired cluster. The method obtains state of the art results in comparison to the literature methods, when compared to the current state of the art in each of the tasks.Comment: To be published in the European Conference on Computer Vision (ECCV) 202

    Transformation Pathways of Silica under High Pressure

    Full text link
    Concurrent molecular dynamics simulations and ab initio calculations show that densification of silica under pressure follows a ubiquitous two-stage mechanism. First, anions form a close-packed sub-lattice, governed by the strong repulsion between them. Next, cations redistribute onto the interstices. In cristobalite silica, the first stage is manifest by the formation of a metastable phase, which was observed experimentally a decade ago, but never indexed due to ambiguous diffraction patterns. Our simulations conclusively reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Modeling Long-Range Context for Concurrent Dialogue Acts Recognition

    Full text link
    In dialogues, an utterance is a chain of consecutive sentences produced by one speaker which ranges from a short sentence to a thousand-word post. When studying dialogues at the utterance level, it is not uncommon that an utterance would serve multiple functions. For instance, "Thank you. It works great." expresses both gratitude and positive feedback in the same utterance. Multiple dialogue acts (DA) for one utterance breeds complex dependencies across dialogue turns. Therefore, DA recognition challenges a model's predictive power over long utterances and complex DA context. We term this problem Concurrent Dialogue Acts (CDA) recognition. Previous work on DA recognition either assumes one DA per utterance or fails to realize the sequential nature of dialogues. In this paper, we present an adapted Convolutional Recurrent Neural Network (CRNN) which models the interactions between utterances of long-range context. Our model significantly outperforms existing work on CDA recognition on a tech forum dataset.Comment: Accepted to CIKM '1

    Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching

    Full text link
    Deep text matching approaches have been widely studied for many applications including question answering and information retrieval systems. To deal with a domain that has insufficient labeled data, these approaches can be used in a Transfer Learning (TL) setting to leverage labeled data from a resource-rich source domain. To achieve better performance, source domain data selection is essential in this process to prevent the "negative transfer" problem. However, the emerging deep transfer models do not fit well with most existing data selection methods, because the data selection policy and the transfer learning model are not jointly trained, leading to sub-optimal training efficiency. In this paper, we propose a novel reinforced data selector to select high-quality source domain data to help the TL model. Specifically, the data selector "acts" on the source domain data to find a subset for optimization of the TL model, and the performance of the TL model can provide "rewards" in turn to update the selector. We build the reinforced data selector based on the actor-critic framework and integrate it to a DNN based transfer learning model, resulting in a Reinforced Transfer Learning (RTL) method. We perform a thorough experimental evaluation on two major tasks for text matching, namely, paraphrase identification and natural language inference. Experimental results show the proposed RTL can significantly improve the performance of the TL model. We further investigate different settings of states, rewards, and policy optimization methods to examine the robustness of our method. Last, we conduct a case study on the selected data and find our method is able to select source domain data whose Wasserstein distance is close to the target domain data. This is reasonable and intuitive as such source domain data can provide more transferability power to the model.Comment: Accepted to WSDM 201

    Android malware detection through generative adversarial networks

    Get PDF
    © 2019 John Wiley & Sons, Ltd. Mobile and cell devices have empowered end users to tweak their cell phones more than ever and introduce applications just as we used to with personal computers. Android likewise portrays an uprise in mobile devices and personal digital assistants. It is an open-source versatile platform fueling incalculable hardware units, tablets, televisions, auto amusement frameworks, digital boxes, and so forth. In a generally shorter life cycle, Android also has additionally experienced a mammoth development in application malware. In this context, a toweringly large measure of strategies has been proposed in theory for the examination and detection of these harmful applications for the Android platform. These strategies attempt to both statically reverse engineer the application and elicit meaningful information as features manually or dynamically endeavor to quantify the runtime behavior of the application to identify malevolence. The overgrowing nature of Android malware has enormously debilitated the support of protective measures, which leaves the platforms such as Android feeble for novel and mysterious malware. Machine learning is being utilized for malware diagnosis in mobile phones as a common practice and in Android distinctively. It is important to specify here that these systems, however, utilize and adapt the learning-based techniques, yet the overhead of hand-created features limits ease of use of such methods in reality by an end user. As a solution to this issue, we mean to make utilization of deep learning–based algorithms as the fundamental arrangement for malware examination on Android. Deep learning turns up as another way of research that has bid the scientific community in the fields of vision, speech, and natural language processing. Of late, models set up on deep convolution networks outmatched techniques utilizing handmade descriptive features at various undertakings. Likewise, our proposed technique to cater malware detection is by design a deep learning model making use of generative adversarial networks, which is responsible to detect the Android malware via famous two-player game theory for a rock-paper-scissor problem. We have used three state-of-the-art datasets and augmented a large-scale dataset of opcodes extracted from the Android Package Kit bytecode and used in our experiments. Our technique achieves F1 score of 99% with a receiver operating characteristic of 99% on the bytecode dataset. This proves the usefulness of our technique and that it can generally be adopted in real life

    Visual Depth Mapping from Monocular Images using Recurrent Convolutional Neural Networks

    Full text link
    A reliable sense-and-avoid system is critical to enabling safe autonomous operation of unmanned aircraft. Existing sense-and-avoid methods often require specialized sensors that are too large or power intensive for use on small unmanned vehicles. This paper presents a method to estimate object distances based on visual image sequences, allowing for the use of low-cost, on-board monocular cameras as simple collision avoidance sensors. We present a deep recurrent convolutional neural network and training method to generate depth maps from video sequences. Our network is trained using simulated camera and depth data generated with Microsoft's AirSim simulator. Empirically, we show that our model achieves superior performance compared to models generated using prior methods.We further demonstrate that the method can be used for sense-and-avoid of obstacles in simulation
    corecore