32 research outputs found
Sequentially based analysis versus image based analysis of Intima Media Thickness in common carotid arteries studies - Do major IMT studies underestimate the true relations for cardio- and cerebrovascular risk?
<p>Abstract</p> <p>Background</p> <p>Image-based B-mode ultrasound has gained popularity in major studies as a non-invasive method of measuring cardio- and cerebrovascular risk factors. However, none of the major studies appears to have paid sufficient attention to the variation in end diastolic wall process. By using sequentially based analyses (SBA) of Intima-Media Thickness (IMT), the general purpose of this study was to show that the current image based (ECG tracked) analysis (IBA) has some major variations and might underestimate the true relations for cardiovascular events and stroke for IMT measurement.</p> <p>Method</p> <p>The study group consisted of 2500 healthy male subjects aged between 35 to 55 years. 4 sequences (300 images) were analyzed per subject. 750,000 images were analysed throughout the course of this study.</p> <p>Results</p> <p>IBA showed significantly lower mean, maximal, and minimal values for IMT in CCA than for SBA. The correlation analysis between IBA and SBA with the cardio- and cerebrovascular risk factors showed a higher correlation of SBA for all risk factors. The Pearson coefficient was 0.81, p < 0.01, for SBA versus Framingham CHD risk level (FCRL) and 0.49, p = 0.01, for IBA versus FCRL.</p> <p>Conclusion</p> <p>IBA did not measure the true maximal values of the IMT in this study. Together with the correlation analysis, this indicates that IBA might underestimate the true relations for IMT and risk factors.</p
A nuclear fluorescent dye identifies pericytes at the neurovascular unit
Perivascular pericytes are key regulators of the blood–brain barrier, vascular development, and cerebral blood flow. Deciphering pericyte roles in health and disease requires cellular tracking; yet, pericyte identification remains challenging. A previous study reported that the far-red fluorophore TO-PRO-3 (642/661), usually employed as a nuclear dye in fixed tissue, was selectively captured by live pericytes from the subventricular zone. Herein, we validated TO-PRO-3 as a specific pericyte tracer in the nervous system (NS). Living pericytes from ex vivo murine hippocampus, cortex, spinal cord, and retina robustly incorporated TO-PRO-3. Classical pericyte immunomarkers such as chondroitin sulphate proteoglycan neuron-glial antigen 2 (NG2) and platelet-derived growth factor receptor beta antigen (PDGFrβ) and the new pericyte dye NeuroTrace 500/525 confirmed cellular specificity of dye uptake.
The TO-PRO-3 signal enabled quantification of pericytes density and morphometry; likewise, TO-PRO-3 labeling allowed visualization of pericytes associated with other components of the neurovascular unit. A subset of TO-PRO-3 stained cells expressed the contractile protein α–SMA, indicative of their ability to control the capillary diameter. Uptake of TO-PRO-3 was independent of connexin/pannexin channels but was highly sensitive to temperature and showed saturation, suggesting that a yet unidentified protein-mediated active transport sustained dye incorporation. We conclude that TO-PRO-3 labeling provides a reliable and simple tool for the bioimaging of
pericytes in the murine NS microvasculature.Comisión Sectorial de Investigación Científica. Proyecto de Investigación y Desarrollo CSIC I+D 2014.Agencia Nacional de Investigación e Innovación FCE_1_2017_1_13610