1,227 research outputs found
Shot-noise in transport and beam experiments
Consider two Fermi gases with the same {\it average} currents: a transport
gas, as in solid-state experiments where the chemical potentials of terminal 1
is and of terminal 2 and 3 is , and a beam, i.e., electrons
entering only from terminal 1 having energies between and . By
expressing the current noise as a sum over single-particle transitions we show
that the temporal current fluctuations are very different: The beam is noisier
due to allowed single-particle transitions into empty states below .
Surprisingly, the correlations between terminals 2 and 3 are the same.Comment: 4 pages, 2 figure
Pairing and persistent currents - the role of the far levels
We calculate the orbital magnetic response to Aharonov Bohm flux of
disordered metallic rings with attractive pairing interaction. We consider the
reduced BCS model, and obtain the result as an expansion of its exact solution
to first order in the interaction. We emphasize the connection between the
large magnetic response and the finite occupation of high energy levels in the
many-body ground state of the ring.Comment: 10 pages, contribution to MS+S200
Steps and dips in the ac conductance and noise of mesoscopic structures
The frequency dependence of the equilibrium ac conductance (or the noise
power spectrum) through a mesoscopic structure is shown to exhibit steps and
dips. The steps, at energies related to the resonances of the structure, are
closely related to the partial Friedel phases of these resonances, thus
allowing a direct measurement of these phases (without interferometry). The
dips in the spectrum are related to a destructive interference in the
absorption of energy by transitions between these resonances, in some
similarity with the Fano effect.Comment: 4 pages, 2 figure
Applications of nonequilibrium Kubo formula to the detection of quantum noise
The Kubo fluctuation-dissipation theorem relates the current fluctuations of
a system in an equilibrium state with the linear AC-conductance. This theorem
holds also out of equilibrium provided that the system is in a stationary state
and that the linear conductance is replaced by the (dynamic) conductance with
respect to the non equilibrium state. We provide a simple proof for that
statement and then apply it in two cases. We first show that in an excess noise
measurement at zero temperature, in which the impedance matching is maintained
while driving a mesoscopic sample out of equilibrium, it is the nonsymmetrized
noise power spectrum which is measured, even if the bare measurement, i.e.
without extracting the excess part of the noise, obtains the symmetrized noise.
As a second application we derive a commutation relation for the two components
of fermionic or bosonic currents which holds in every stationary state and
which is a generalization of the one valid only for bosonic currents. As is
usually the case, such a commutation relation can be used e.g. to derive
Heisenberg uncertainty relationships among these current components.Comment: 10 pages, Invited talk to be given by Y. I. at the SPIE Noise
Conference, Grand Canary, June 2004. Added reference and 2 footnotes,
corrected typo in Eq.
- …