106 research outputs found

    Quantum kinetics and thermalization in an exactly solvable model

    Get PDF
    We study the dynamics of relaxation and thermalization in an exactly solvable model with the goal of understanding the effects of off-shell processes. The focus is to compare the exact evolution of the distribution function with different approximations to the relaxational dynamics: Boltzmann, non-Markovian and Markovian quantum kinetics. The time evolution of the distribution function is evaluated exactly using two methods: time evolution of an initially prepared density matrix and by solving the Heisenberg equations of motion. There are two different cases that are studied in detail: i) no stable particle states below threshold of the bath and a quasiparticle resonance above it and ii) a stable discrete exact `particle' state below threshold. For the case of quasiparticles in the continuum (resonances) the exact quasiparticle distribution asymptotically tends to a statistical equilibrium distribution that differs from a simple Bose-Einstein form as a result of off-shell processes. In the case ii), the distribution of particles does not thermalize with the bath. We study the kinetics of thermalization and relaxation by deriving a non-Markovian quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian approximation that includes off-shell contributions and the usual Boltzmann equation are obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian and Boltzmann approximations are compared to the exact result of the model. The Boltzmann approach is seen to fail in the case of wide resonances and when threshold and renormalization effects are important.Comment: 49 pages, LaTex, 17 figures (16 eps figures

    Dynamical Viscosity of Nucleating Bubbles

    Get PDF
    We study the viscosity corrections to the growth rate of nucleating bubbles in a first order phase transition in scalar field theory. We obtain the non-equilibrium equation of motion of the coordinate that describes small departures from the critical bubble and extract the growth rate consistently in weak coupling and in the thin wall limit. Viscosity effects arise from the interaction of this coordinate with the stable quantum and thermal fluctuations around a critical bubble. In the case of 1+1 dimensions we provide an estimate for the growth rate that depends on the details of the free energy functional. In 3+1 dimensions we recognize robust features that are a direct consequence of the thin wall approximation and give the leading viscosity corrections.These are long-wavelength hydrodynamic fluctuations that describe surface waves, quasi-Goldstone modes which are related to ripples on interfaces in phase ordered Ising-like systems. We discuss the applicability of our results to describe the growth rate of hadron bubbles in a quark-hadron first order transition.Comment: 40 pages, 4 figures, revtex, minor changes, to be published in Phys. Rev.

    Topological Spin Texture Created by Zhang--Rice Singlets in Cuprate Superconductors

    Full text link
    One of the most important effects of strong electron correlation in high-Tc cuprates is the formation of Zhang-Rice singlets. By fully accounting for the quantum correlation effect of Zhang-Rice singlet formation, we show that a topological spin texture, skyrmion, is created around a Zhang-Rice singlet in the single-hole-doped CuO2 plane. The skyrmion picture provides a natural connection between the antiferromagnetic correlation and the doping concentration x.Comment: 17 pages, 4 figure

    Electronic structure calculations with dynamical mean-field theory

    Full text link

    Domain Walls Out of Equilibrium

    Get PDF
    We study the non-equilibrium dynamics of domain walls in real time for Ï•4\phi^4 and Sine Gordon models in 1+1 dimensions in the dilute regime. The equation of motion for the collective coordinate is obtained by integrating out the meson excitations around the domain wall to one-loop order. The real-time non-equilibrium relaxation is studied analytically and numerically to this order. The constant friction coefficient vanishes but there is dynamical friction and relaxation caused by off-shell non-Markovian effects. The validity of a Markovian description is studied in detail. The proper Langevin equation is obtained to this order, the noise is Gaussian and additive but colored. We analyze the classical and hard thermal loop contributions to the self-energy and noise kernels and show that at temperatures larger than the meson mass the hard contributions are negligible and the finite temperature contribution to the dynamics is governed by the classical soft modes of the meson bath. The long time relaxational dynamics is completely dominated by classical Landau damping resulting in that the corresponding time scales are not set by the temperature but by the meson mass. The noise correlation function and the dissipative kernel obey a generalized form of the Fluctuation-Dissipation relation.Comment: 39 pages, LaTex, 9 figures (3 EPS; 6 GIF), minor change

    Extraction from aqueous media novocaine aliphatic alcohols using salting out agent

    No full text
    The choice of rational conditions for the extraction of novocaine. Development of effective extraction systems for almost its complete removal from aqueous media. Establishing correlations between coefficients distribution (lgD) novocaine and the number of C–atoms in a molecule of alcohol
    • …
    corecore