191 research outputs found
Cosmological Moduli Problem in Gauge-mediated Supersymmetry Breaking Theories
A generic class of string theories predicts the existence of light moduli
fields, and they are expected to have masses comparable to the
gravitino mass which is in a range of keV--1GeV in
gauge-mediated supersymmetry breaking theories. Such light fields with weak
interactions suppressed by the Planck scale can not avoid some stringent
cosmological constraints, that is, they suffer from `cosmological moduli
problems'. We show that all the gravitino mass region keV 1GeV is excluded by the constraints even if we incorporate a
late-time mini-inflation (thermal inflation). However, a modification of the
original thermal inflation model enables the region keV 500keV to survive the constraints. It is also stressed that
the moduli can be dark matter in our universe for the mass region keV
100keV.Comment: A few changes in section IV and
Ghost D-branes
We define a ghost D-brane in superstring theories as an object that cancels
the effects of an ordinary D-brane. The supergroups U(N|M) and OSp(N|M) arise
as gauge symmetries in the supersymmetric world-volume theory of D-branes and
ghost D-branes. A system with a pair of D-brane and ghost D-brane located at
the same location is physically equivalent to the closed string vacuum. When
they are separated, the system becomes a new brane configuration. We generalize
the type I/heterotic duality by including n ghost D9-branes on the type I side
and by considering the heterotic string whose gauge group is OSp(32+2n|2n).
Motivated by the type IIB S-duality applied to D9- and ghost D9-branes, we also
find type II-like closed superstrings with U(n|n) gauge symmetry.Comment: 49 pages, 6 figures, harvmac. v2: references and acknowledgements
adde
- …