11 research outputs found

    Triplet superconductivity in a one-dimensional ferromagnetic t-J model

    Full text link
    In this paper we study the ground state phase diagram of a one-dimensional t−U−Jt-U-J model, at half-filling. In the large-bandwidth limit and for ferromagnetic exchange with easy-plane anisotropy, a phase with gapless charge and massive spin excitations, characterized by the coexistence of triplet superconducting (TSTS) and spin density wave (SDWzSDW^{z}) instabilities is realized in the ground state. With reduction of the bandwidth, a transition into an insulating phase showing properties of the spin-1/2 XY model takes place. In the case of weakly anisotropic antiferromagnetic exchange the system shows a long range dimerized (Peierls) ordering in the ground state. The complete weak-coupling phase diagram of the model, including effects of the on-site Hubbard interaction, is obtained

    Hole-Hole Contact Interaction in the t-J Model

    Full text link
    Using an analytical variational approach we calculate the hole-hole contact interaction on the N\'{e}el background. Solution of the Bethe-Salpeter equation with this interaction gives bound states in dd- and p-waves with binding energies close to those obtained by numerical methods. At t/J≥2−3t/J \ge 2-3 the bound state disappears. In conclusion we discuss the relation between short range and long range interactions and analogy with the problem of pion condensation in nuclear matter.Comment: 11 pp. (LATEX), 7 figures (PostScript) appended, report N
    corecore