16,541 research outputs found

    Novel Charge Order and Superconductivity in Two-Dimensional Frustrated Lattice at Quarter Filling

    Full text link
    Motivated by the various physical properties observed in θ\theta-(BEDT-TTF)2_2X, we study the ground state of extended Hubbard model on two-dimensional anisotropic triangular lattice at 1/4-filling with variational Monte Carlo method. It is shown that the nearest-neighbor Coulomb interaction enhances the charge fluctuation and it induces the anomalous state such as charge-ordered metallic state and the triplet next-nearest-neighbor ff-wave superconductivity. We discuss the relation to the real materials and propose the unified view of the family of θ\theta-(BEDT-TTF)2_2X.Comment: 4 pages, 5 figure

    Nonlinear Conduction by Melting of Stripe-Type Charge Order in Organic Conductors with Triangular Lattices

    Full text link
    We theoretically discuss the mechanism for the peculiar nonlinear conduction in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2X [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] through the melting of stripe-type charge order. An extended Peierls-Hubbard model attached to metallic electrodes is investigated by a nonequilibrium Green's function technique. A novel current-voltage characteristic appears in a coexistent state of stripe-type and nonstripe 3-fold charge orders, where the applied bias melts mainly the stripe-type charge order through the reduction of lattice distortion, whereas the 3-fold charge order survives. These contrastive responses of the two different charge orders are consistent with the experimental observations.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Quantum Melting of Charge Order due to Frustration in Two-Dimensional Quarter-Filled Systems

    Full text link
    The effect of geometrical frustration in a two-dimensional 1/4-filled strongly correlated electron system is studied theoretically, motivated by layered organic molecular crystals. An extended Hubbard model on the square lattice is considered, with competing nearest neighbor Coulomb interaction, V, and that of next-nearest neighbor along one of the diagonals, V', which favor different charge ordered states. Based on exact diagonalization calculations, we find a metallic phase stabilized over a broad window at V' ~ V even for large Coulomb repulsion strengths as a result of frustrating the charge ordered states. Slightly modifying the lattice geometry relevant to the actual organic compounds does not alter the results, suggesting that this `quantum melting' of charge order is a robust feature of frustrated strongly correlated 1/4-filled systems.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    2-elementary subgroups of the space Cremona group

    Full text link
    We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds
    • …
    corecore