192 research outputs found

    Simple compressive method for treatment of auricular gaematoma using dental silicone material

    Get PDF
    Most of the previous treatment methods for auricular haematoma are inconvenient for both patients and doctors because they are time-consuming and complex and must be performed under sterile conditions. The purpose of this study was to evaluate the effectiveness of a simple compressive method using a dental (silicone) impression material and comparing it with other methods for treatment of auricular haematomas. The authors aspirated a haematoma and then placed a mixed base and catalyst of silicone putty material on the anterior and posterior surfaces of the auricle in the shape of an inverted U for seven days. From the 24 cases managed with this method, 23 cases (95.8 per cent) were successfully healed. Eight patients were treated with a collodion-cotton wool cast and 16 of 19 patients were successfully treated with dental cotton-wool rolls. The average number of those visiting the hospital was 2.7 for the collodion-cotton wool cast, 6.9 for the dental cotton-wool roll, and 3.1 for dental silicone. The mean treatment durations were 8.1 days for the collodion-cotton wool cast, 13.8 days for the dental cotton-wool roll, and 8.6 days for dental silicone. The authors believe that this compressive method using dental silicone material is simple and appropriate for the treatment of auricular haematoma

    Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>R </it>locus controls the color of pigmented soybean (<it>Glycine max</it>) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (<it>iRT</it>) and brown (<it>irT</it>) soybean (<it>Glycine max</it>) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase (<it>UGT78K1</it>) from the seed coat of black (<it>iRT</it>) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether <it>UGT78K1 </it>was overexpressed with anthocyanin biosynthesis in the black (<it>iRT</it>) seed coat compared to the nearly-isogenic brown (<it>irT</it>) tissue.</p> <p>In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system.</p> <p>Results</p> <p>Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (<it>iRT</it>) or the brown (<it>irT</it>) seed coat. A global analysis of gene expressions identified <it>UGT78K1 </it>and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis <it>in vitro </it>and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black (<it>iRT</it>) seed coat development.</p> <p>Conclusion</p> <p>Metabolite composition and gene expression differences between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and phenylpropanoid isogenes were differentially-expressed between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats, and <it>UGT78K2 </it>and <it>OMT5 </it>were validated to code UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase and anthocyanin 3'-<it>O</it>-methyltransferase proteins <it>in vitro</it>, respectively. Duplicate gene copies for several enzymes were overexpressed in the black (<it>iRT</it>) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color using RNA interference.</p

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201
    corecore