13,689 research outputs found

    Is the σ\sigma meson dynamically generated?

    Full text link
    We study the problem whether the σ\sigma meson is generated `dynamically'. A pedagogical analysis on the toy O(N) linear sigma model is performed and we find that the large NcN_c limit and the mσ→∞m_\sigma\to \infty limit does not commute. The sigma meson may not necessarily be described as a dynamically generated resonance. On the contrary, the sigma meson may be more appropriately described by considering it as an explicit degree of freedom in the effective lagrangian.Comment: Contribution to ``Quark Confinement and Hadron Spectrum VII'', 2--7 Sept. 2006, Ponta Delgada, Acores, Portuga

    Is the f0(600)f_0(600) meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond

    Get PDF
    O(N) linear σ\sigma model is solvable in the large NN limit and hence provides a useful theoretical laboratory to test various unitarization approximations. We find that the large NcN_c limit and the mσ→∞m_\sigma\to \infty limit do not commute. In order to get the correct large NcN_c spectrum one has to firstly take the large NcN_c limit. We argue that the f0(600)f_0(600) meson may not be described as generated dynamically. On the contrary, it is most appropriately described at the same level as the pions, i.e, both appear explicitly in the effective lagrangian. Actually it is very likely the σ\sigma meson responsible for the spontaneous chiral symmetry breaking in a lagrangian with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified; revised version accepted by IJMP

    Association of common zoonotic pathogens with concentrated animal feeding operations

    Get PDF
    Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential

    On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos

    Full text link
    The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant Λeff\Lambda_{eff} which is the sum of the quantum zero point energy Λdarkenergy\Lambda_{dark energy} and the geometric cosmological constant Λ\Lambda. The OPERA experiment can be applied to determine the geometric cosmological constant Λ\Lambda. It is the first time to distinguish the contributions of Λ\Lambda and Λdarkenergy\Lambda_{dark energy} from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter space-time symmetry.Comment: 7 pages, no figure

    High sensitivity microwave detection using a magnetic tunnel junction in the absence of an external applied magnetic field

    Full text link
    In the absence of any external applied magnetic field, we have found that a magnetic tunnel junction (MTJ) can produce a significant output direct voltage under microwave radiation at frequencies, which are far from the ferromagnetic resonance condition, and this voltage signal can be increase by at least an order of magnitude by applying a direct current bias. The enhancement of the microwave detection can be explained by the nonlinear resistance/conductance of the MTJs. Our estimation suggests that optimized MTJs should achieve sensitivities for non-resonant broadband microwave detection of about 5,000 mV/mW
    • …
    corecore