15,242 research outputs found

    Decoupling of heavy quarks in HQET

    Get PDF
    Decoupling of c-quark loops in b-quark HQET is considered. The decoupling coefficients for the HQET heavy-quark field and the heavy-light quark current are calculated with the three-loop accuracy. The last result can be used to improve the accuracy of extracting f_B from HQET lattice simulations (without c-quark loops). The decoupling coefficient for the flavour-nonsinglet QCD current with n antisymmetrized gamma-matrices is also obtained at three loops; the result for the tensor current (n=2) is new.Comment: JHEP3 documentclass; the results in a computer-readable form can be found at http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp06/ttp06-25/ V2: a few typos corrected, a few minor text improvements, a few references added; V3: several typos in formulas fixe

    Bimaximal Neutrino Mixing with Discrete Flavour Symmetries

    Full text link
    In view of the fact that the data on neutrino mixing are still compatible with a situation where Bimaximal mixing is valid in first approximation and it is then corrected by terms of order of the Cabibbo angle, we present examples where these properties are naturally realized. The models are supersymmetric in 4-dimensions and based on the discrete non-Abelian flavour symmetry S4.Comment: 8 pages, 1 figure; contribution prepared for DISCRETE'10 - Symposium on Prospects in the Physics of Discrete Symmetrie

    Form factors of descendant operators: Free field construction and reflection relations

    Full text link
    The free field representation for form factors in the sinh-Gordon model and the sine-Gordon model in the breather sector is modified to describe the form factors of descendant operators, which are obtained from the exponential ones, \e^{\i\alpha\phi}, by means of the action of the Heisenberg algebra associated to the field ϕ(x)\phi(x). As a check of the validity of the construction we count the numbers of operators defined by the form factors at each level in each chiral sector. Another check is related to the so called reflection relations, which identify in the breather sector the descendants of the exponential fields \e^{\i\alpha\phi} and \e^{\i(2\alpha_0-\alpha)\phi} for generic values of α\alpha. We prove the operators defined by the obtained families of form factors to satisfy such reflection relations. A generalization of the construction for form factors to the kink sector is also proposed.Comment: 29 pages; v2: minor corrections, some references added; v3: minor corrections; v4,v5: misprints corrected; v6: minor mistake correcte

    Raising and lowering operators, factorization and differential/difference operators of hypergeometric type

    Full text link
    Starting from Rodrigues formula we present a general construction of raising and lowering operators for orthogonal polynomials of continuous and discrete variable on uniform lattice. In order to have these operators mutually adjoint we introduce orthonormal functions with respect to the scalar product of unit weight. Using the Infeld-Hull factorization method, we generate from the raising and lowering operators the second order self-adjoint differential/difference operator of hypergeometric type.Comment: LaTeX, 24 pages, iopart style (late submission

    Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos

    Full text link
    Mixing of active neutrinos with sterile ones generate ``induced'' contributions to the mass matrix of active neutrinos mSsin2θaS\sim m_S \sin^2\theta_{aS}, where mSm_S is the Majorana mass of the sterile neutrino and θaS\theta_{aS} is the active-sterile mixing angle. We study possible effects of the induced matrix which can modify substantially the implications of neutrino oscillation results. We have identified the regions of mSm_S and sin2θaS\sin^2\theta_{aS} where the induced matrix (i) provides the dominant structures, (ii) gives the sub-dominant effects and (iii) where its effects can be neglected. The induced matrix can be responsible for peculiar properties of the lepton mixing and neutrino mass spectrum, in particular, it can generate the tri-bimaximal mixing. We update and discuss bounds on the induced masses from laboratory measurements, astrophysics and cosmology. We find that substantial impact of the induced matrix is possible if mS0.11m_S \sim 0.1-1 eV and sin2θaS103102\sin^2\theta_{aS} \sim 10^{-3} - 10^{-2} or mS200m_S \geq 200 MeV and sin2θaS109\sin^2\theta_{aS} \leq 10^{-9}. The bounds can be relaxed in cosmological scenarios with low reheating temperature, if sterile neutrinos decay sufficiently fast, or their masses change with time.Comment: Figures updated, version to be published in Phys. Rev.

    Neutrino Physics: Open Theoretical Questions

    Full text link
    We know that neutrino mass and mixing provide a window to physics beyond the Standard Model. Now this window is open, at least partly. And the questions are: what do we see, which kind of new physics, and how far "beyond"? I summarize the present knowledge of neutrino mass and mixing, and then formulate the main open questions. Following the bottom-up approach, properties of the neutrino mass matrix are considered. Then different possible ways to uncover the underlying physics are discussed. Some results along the line of: see-saw, GUT and SUSY GUT are reviewed.Comment: 17 pages, latex, 12 figures. Talk given at the XXI International Symposium on Lepton and Photon Interactions at High Energies, ``Lepton Photon 2003", August 11-16, 2003 - Fermilab, Batavia, IL US

    Impact of the Neutrino Magnetic Moment on the Neutrino Fluxes and the Electron Fraction in core-collapse Supernovae

    Full text link
    We explore the effect of the neutrino magnetic moment on neutrino scattering with matter in a core-collapse Supernova. We study the impact both on the neutrino fluxes and on the electron fraction. We find that sizeable modifications require very large magnetic moments both for Dirac and Majorana neutrinos.Comment: 7 pages, 6 figure

    Neutrino masses and mixing

    Full text link
    Status of determination of the neutrino masses and mixing is formulated and possible uncertainties, especially due to presence of the sterile neutrinos, are discussed. The data hint an existence of special ``neutrino'' symmetries. If not accidental these symmetries have profound implications and can substantially change the unification program. The key issue on the way to underlying physics is relations between quarks and leptons. The approximate quark-lepton symmetry or universality can be reconciled with strongly different patterns of masses and mixings due to nearly singular character of the mass matrices or screening of the Dirac structures in the double see-saw mechanism.Comment: 11 pages, latex, iopams.sty, 3 figures. Invited talk given at TAUP2005, September 10 - 14, 2005, Zaragoza, Spai

    Exact evaluation of density matrix elements for the Heisenberg chain

    Full text link
    We have obtained all the density matrix elements on six lattice sites for the spin-1/2 Heisenberg chain via the algebraic method based on the quantum Knizhnik-Zamolodchikov equations. Several interesting correlation functions, such as chiral correlation functions, dimer-dimer correlation functions, etc... have been analytically evaluated. Furthermore we have calculated all the eigenvalues of the density matrix and analyze the eigenvalue-distribution. As a result the exact von Neumann entropy for the reduced density matrix on six lattice sites has been obtained.Comment: 33 pages, 4 eps figures, 3 author

    Neutrino mixing and CP violation from Dirac-Majorana bimaximal mixture and quark-lepton unification

    Full text link
    We demonstrate that only two ansatz can produce the features of the neutrino mixing angles. The first ansatz comes from the quark-lepton grand unification; νDi=VCKMνα\nu_{Di} = V_{CKM} \nu_{\alpha} is satisfied for left-handed neutrinos, where νDi\nu_{Di} are the Dirac mass eigenstates and να\nu_{\alpha} are the flavour eigenstates. The second ansatz comes from the assumption; νDi=Ubimaximalνi\nu_{Di} = U_{bimaximal} \nu_{i} is satisfied between the Dirac mass eigenstates νDi\nu_{Di} and the light Majorana neutrino mass eigenstates νi\nu_{i}, where UbimaximalU_{bimaximal} is the bimaximal mixing matrix. By these two ansatz, the Maki-Nakagawa-Sakata matrix is given by UMNS=VCKMUbimaximalU_{MNS} = V_{CKM}^\dagger U_{bimaximal}. We find that in this model the novel relation θsol+θ13=π/4\theta_{sol} + \theta_{13} = \pi/4 is satisfied, where θsol\theta_{sol} and θ13\theta_{13} are solar and CHOOZ angle respectively. This "Solar-CHOOZ Complementarity" relation indicates that only if the CHOOZ angle θ13\theta_{13} is sizable, the solar angle θsol\theta_{sol} can deviate from the maximal mixing. We also infer the CP violation in neutrino oscillations. The leptonic Dirac CP phase δMNS\delta_{MNS} is predicted as sinδMNSAλ2η\sin \delta_{MNS} \simeq A \lambda^2 \eta, where A,λ,ηA, \lambda, \eta are the CKM parameters in Wolfenstein parametrization. Furthermore, we remark that the ratio of the Jarlskog CP violation factor for quarks and leptons is important, because the large uncertainty on η\eta is cancelled out in the ratio, RJJCKM/JMNS42Aλ35×102R_J \equiv J_{CKM}/J_{MNS} \simeq 4\sqrt{2} A \lambda^3 \simeq 5 \times 10^{-2}.Comment: 9 pages, no figures; v2 references added, v3 references adde
    corecore