14,444 research outputs found
Generally Covariant Conservative Energy-Momentum for Gravitational Anyons
We obtain a generally covariant conservation law of energy-momentum for
gravitational anyons by the general displacement transform. The energy-momentum
currents have also superpotentials and are therefore identically conserved. It
is shown that for Deser's solution and Clement's solution, the energy vanishes.
The reasonableness of the definition of energy-momentum may be confirmed by the
solution for pure Einstein gravity which is a limit of vanishing Chern-Simons
coulping of gravitational anyons.Comment: 12 pages, Latex, no figure
Topology of Knotted Optical Vortices
Optical vortices as topological objects exist ubiquitously in nature. In this
paper, by making use of the -mapping topological current theory, we
investigate the topology in the closed and knotted optical vortices. The
topological inner structure of the optical vortices are obtained, and the
linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P.
R. China
Disclination in Lorentz Space-Time
The disclination in Lorentz space-time is studied in detail by means of
topological properties of -mapping. It is found the space-time
disclination can be described in term of a Dirac spinor. The size of the
disclination, which is proved to be the difference of two sets of su(2)% -like
monopoles expressed by two mixed spinors, is quantized topologically in terms
of topological invariantswinding number. The projection of space-time
disclination density along an antisymmetric tensor field is characterized by
Brouwer degree and Hopf index.Comment: Revtex, 7 page
Robust active magnetic dearing control using stabilizing dynamical compensators
The robust control of active magnetic bearings, based on a linearised interval model, is considered. Through robust stability analysis, all the first-order robust stabilizing dynamical compensators for the interval system are obtained. Disturbance attenuation and minimum control effort are also addressed. The approach is applied to a high-speed flywheel supported by two active and two passive magnetic bearings. Simulation and experimental results both show that it is simple, effective, and robust
Robust magnetic bearing control using stabilizing dynamical compensators
Abstract—This paper considers the robust control of an active radial magnetic bearing system, having a homopolar, external rotor topology, which is used to support an annular fiber composite flywheel rim. A first-order dynamical compensator, which uses only position feedback information, is used for control, its design being based on a linearized one-dimensional second-order model which is treated as an interval system in order to cope with parameter uncertainties. Through robust stability analysis, a parameterization of all first-order robustly stabilizing dynamical compensators for the interval system is initially obtained. Then, by appropriate selection of the free parameters in the robust controller, the H2 norm of the disturbance-output transfer function is made arbitrarily small over the system parameter intervals, and the norm of the input–output transfer function is made arbitrarily close to a lower bound. Simulation and experimental
results demonstrate both stability and performance robustness of the developed controller
A scheme for demonstration of fractional statistics of anyons in an exactly solvable model
We propose a scheme to demonstrate fractional statistics of anyons in an
exactly solvable lattice model proposed by Kitaev that involves four-body
interactions. The required many-body ground state, as well as the anyon
excitations and their braiding operations, can be conveniently realized through
\textit{dynamic}laser manipulation of cold atoms in an optical lattice. Due to
the perfect localization of anyons in this model, we show that a quantum
circuit with only six qubits is enough for demonstration of the basic braiding
statistics of anyons. This opens up the immediate possibility of
proof-of-principle experiments with trapped ions, photons, or nuclear magnetic
resonance systems.Comment: 4 pages, 3 figure
Detecting Extra Dimension by Helium-like Ions
Considering that gravitational force might deviate from Newton's
inverse-square law and become much stronger in small scale, we present a method
to detect the possible existence of extra dimensions in the ADD model. By
making use of an effective variational wave function, we obtain the
nonrelativistic ground energy of a helium atom and its isoelectronic sequence.
Based on these results, we calculate gravity correction of the ADD model. Our
calculation may provide a rough estimation about the magnitude of the
corresponding frequencies which could be measured in later experiments.Comment: 8 pages, no figures, accepted by Mod. Phys. Lett.
Classical simulation of quantum many-body systems with a tree tensor network
We show how to efficiently simulate a quantum many-body system with tree
structure when its entanglement is bounded for any bipartite split along an
edge of the tree. This is achieved by expanding the {\em time-evolving block
decimation} simulation algorithm for time evolution from a one dimensional
lattice to a tree graph, while replacing a {\em matrix product state} with a
{\em tree tensor network}. As an application, we show that any one-way quantum
computation on a tree graph can be efficiently simulated with a classical
computer.Comment: 4 pages,7 figure
- …