599 research outputs found
Exact eigenspectrum of the symmetric simple exclusion process on the complete, complete bipartite, and related graphs
We show that the infinitesimal generator of the symmetric simple exclusion
process, recast as a quantum spin-1/2 ferromagnetic Heisenberg model, can be
solved by elementary techniques on the complete, complete bipartite, and
related multipartite graphs. Some of the resulting infinitesimal generators are
formally identical to homogeneous as well as mixed higher spins models. The
degeneracies of the eigenspectra are described in detail, and the
Clebsch-Gordan machinery needed to deal with arbitrary spin-s representations
of the SU(2) is briefly developed. We mention in passing how our results fit
within the related questions of a ferromagnetic ordering of energy levels and a
conjecture according to which the spectral gaps of the random walk and the
interchange process on finite simple graphs must be equal.Comment: Final version as published, 19 pages, 4 figures, 40 references given
in full forma
Delayed treatment of basilar thrombosis in a patient with a basilar aneurysm: a case report
<p>Abstract</p> <p>Introduction</p> <p>Acute occlusion of the basilar artery is a neurological emergency that has a high risk of severe disability and mortality. Delayed thrombolysis or endovascular therapy has been performed with some success in patients who present after 3 hours of symptom onset. Here we present the first case of delayed intra-arterial thrombolysis of a basilar artery thrombosis associated with a large saccular aneurysm.</p> <p>Case presentation</p> <p>A 73-year-old Caucasian man with a history of smoking and alcohol abuse presented to the Emergency Department complaining of diplopia and mild slurred speech and who progressed over 12 hours to coma and quadriparesis. He was found to have a large basilar tip aneurysm putting him at high risk for hemorrhage with lytic treatment.</p> <p>Conclusion</p> <p>The treatment options for basilar thrombosis are discussed. Aggressive treatment options should be considered despite long durations of clinical symptoms in basilar thrombosis, even in extremely high risk patients.</p
Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption
For dissipation-free photon-photon interaction at the single photon level, we
analyze one-photon transition and two-photon transition induced by photon pairs
in three-level atoms using two-photon wavefunctions. We show that the
two-photon absorption can be substantially enhanced by adjusting the time
correlation of photon pairs. We study two typical cases: Gaussian wavefunction
and rectangular wavefunction. In the latter, we find that under special
conditions one-photon transition is completely suppressed while the high
probability of two-photon transition is maintained.Comment: 6 pages, 4 figure
Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality
We study the energy spectra of small three-dimensional (3D) and
two-dimensional (2D) semiconductor quantum dots through different theoretical
approaches (single-site Hubbard and Hartree-Fock hamiltonians); in the smallest
dots we also compare with exact results. We find that purely 2D models often
lead to an inadequate description of the Coulomb interaction existing in
realistic structures, as a consequence of the overestimated carrier
localization. We show that the dimensionality of the dots has a crucial impact
on (i) the accuracy of the predicted addition spectra; (ii) the range of
validity of approximate theoretical schemes. When applied to realistic 3D
geometries, the latter are found to be much more accurate than in the
corresponding 2D cases for a large class of quantum dots; the single-site
Hubbard hamiltonian is shown to provide a very effective and accurate scheme to
describe quantum dot spectra, leading to good agreement with experiments.Comment: LaTeX 2.09, RevTeX, 25 pages, 9 Encapsulated Postscript figures. To
be published in Physical Review
At-sea distribution and habitat of breeding Japanese Murrelets Synthliboramphus wumizusume: implications for conservation management
The Japanese Murrelet Synthliboramphus wumizusume is a rare, globally âVulnerableâ seabird, endemic to Japan and South Korea. However, little is known of its at-sea distribution, habitat or threats. We conducted several years of at-sea surveys around Japan to model Japanese Murrelet density in relation to habitat parameters, and make spatial predictions to assess the adequacy of the current Japanese marine Important Bird and Biodiversity Area (IBA) network for the species. During a five-year period, 3,485 km of at-sea surveys recorded 3,161 Japanese Murrelets around four breeding locations. Maximum murrelet group size was 90 individuals with a mean group size of 2.9 ± 4.2 individuals. Models of Japanese Murrelet at-sea density around the two largest breeding locations predicted that almost all murrelets occur within 30 km of the breeding colony and most within 10 km. Murrelets were predicted closer to the colony in May than in April and closer to the colony at a neritic colony than at an offshore island colony. Additionally, murrelets breeding on an offshore island colony also commuted to mainland neritic habitat for foraging. The marine habitat used by Japanese Murrelets differed between each of the four surveyed colonies, however oceanographic variables offered little explanatory power in models. Models with colony, month and year generated four foraging radii (9â39 km wide) containing murrelet densities of > 0.5 birds/km2. Using these radii the Japanese marine IBA network was found to capture between 95% and 25% of Japanese Murrelet at-sea habitat while breeding and appears appropriately configured to protect near-colony murrelet distributions. Given the range of marine habitats that breeding murrelets inhabit, our simple models offer an applicable method for predicting to unsampled colonies and generating ecologically-informed seaward extension radii. However, data on colony populations and further at-sea surveys are necessary to refine models and improve predictions
Supramolecular interactions in clusters of polar and polarizable molecules
We present a model for molecular materials made up of polar and polarizable
molecular units. A simple two state model is adopted for each molecular site
and only classical intermolecular interactions are accounted for, neglecting
any intermolecular overlap. The complex and interesting physics driven by
interactions among polar and polarizable molecules becomes fairly transparent
in the adopted model. Collective effects are recognized in the large variation
of the molecular polarity with supramolecular interactions, and cooperative
behavior shows up with the appearance, in attractive lattices, of discontinuous
charge crossovers. The mean-field approximation proves fairly accurate in the
description of the gs properties of MM, including static linear and non-linear
optical susceptibilities, apart from the region in the close proximity of the
discontinuous charge crossover. Sizeable deviations from the excitonic
description are recognized both in the excitation spectrum and in linear and
non-linear optical responses. New and interesting phenomena are recognized near
the discontinuous charge crossover for non-centrosymmetric clusters, where the
primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure
Excitonic Strings in one dimensional organic compounds
Important questions concern the existence of excitonic strings in organic
compounds and their signatures in the photophysics of these systems. A model in
terms of Hard Core Bosons is proposed to study this problem in one dimension.
Mainly the cases with two and three particles are studied for finite and
infinite lattices, where analytical results are accessible. It is shown that if
bi-excitonic states exist, three-excitonic and even, n-excitonic strings, at
least in a certain range of parameters, will exist. Moreover, the behaviour of
the transitions from one exciton to the biexciton is fully clarified. The
results are in agreement with exact finite cluster diagonalizations of several
model Hamiltonians.Comment: 36 pages, 4 eps figs. to appear in Phys. Rev.
Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
- âŠ