624 research outputs found

    Synchronizability determined by coupling strengths and topology on Complex Networks

    Full text link
    We investigate in depth the synchronization of coupled oscillators on top of complex networks with different degrees of heterogeneity within the context of the Kuramoto model. In a previous paper [Phys. Rev. Lett. 98, 034101 (2007)], we unveiled how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks. Here, we provide more evidence on this phenomenon extending the previous work to networks that interpolate between homogeneous and heterogeneous topologies. We also present new details on the path towards synchronization for the evolution of clustering in the synchronized patterns. Finally, we investigate the synchronization of networks with modular structure and conclude that, in these cases, local synchronization is first attained at the most internal level of organization of modules, progressively evolving to the outer levels as the coupling constant is increased. The present work introduces new parameters that are proved to be useful for the characterization of synchronization phenomena in complex networks.Comment: 11 pages, 10 figures and 1 table. APS forma

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    Complex networks: new trends for the analysis of brain connectivity

    Full text link
    Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalography, or functional magnetic resonance imaging techniques provide functional connectivity patterns between different brain areas, and during different pathological and cognitive neuro-dynamical states. In this Tutorial we review novel complex networks approaches to unveil how brain networks can efficiently manage local processing and global integration for the transfer of information, while being at the same time capable of adapting to satisfy changing neural demands.Comment: Tutorial paper to appear in the Int. J. Bif. Chao

    Detection of Complex Networks Modularity by Dynamical Clustering

    Full text link
    Based on cluster de-synchronization properties of phase oscillators, we introduce an efficient method for the detection and identification of modules in complex networks. The performance of the algorithm is tested on computer generated and real-world networks whose modular structure is already known or has been studied by means of other methods. The algorithm attains a high level of precision, especially when the modular units are very mixed and hardly detectable by the other methods, with a computational effort O(KN){\cal O}(KN) on a generic graph with NN nodes and KK links.Comment: 5 pages, 2 figures. Version accepted for publication on PRE Rapid Communications: figures changed and text adde
    corecore