5,059 research outputs found

    Spin correlated interferometry for polarized and unpolarized photons on a beam splitter

    Get PDF
    Spin interferometry of the 4th order for independent polarized as well as unpolarized photons arriving simultaneously at a beam splitter and exhibiting spin correlation while leaving it, is formulated and discussed in the quantum approach. Beam splitter is recognized as a source of genuine singlet photon states. Also, typical nonclassical beating between photons taking part in the interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at http://m3k.grad.hr/pavici

    Dispersion and fidelity in quantum interferometry

    Full text link
    We consider Mach-Zehnder and Hong-Ou-Mandel interferometers with nonclassical states of light as input, and study the effect that dispersion inside the interferometer has on the sensitivity of phase measurements. We study in detail a number of different one- and two-photon input states, including Fock, dual Fock, N00N states, and photon pairs from parametric downconversion. Assuming there is a phase shift ϕ0\phi_0 in one arm of the interferometer, we compute the probabilities of measurement outcomes as a function of ϕ0\phi_0, and then compute the Shannon mutual information between ϕ0\phi_0 and the measurements. This provides a means of quantitatively comparing the utility of various input states for determining the phase in the presence of dispersion. In addition, we consider a simplified model of parametric downconversion for which probabilities can be explicitly computed analytically, and which serves as a limiting case of the more realistic downconversion model.Comment: 12 pages, 14 figures. Submitted to Physical Review

    Field-Trial of Machine Learning-Assisted Quantum Key Distribution (QKD) Networking with SDN

    Full text link
    We demonstrated, for the first time, a machine-learning method to assist the coexistence between quantum and classical communication channels. Software-defined networking was used to successfully enable the key generation and transmission over a city and campus network

    Demonstration of Temporal Distinguishability in a Four-Photon State and a Six-Photon State

    Full text link
    An experiment is performed to demonstrate the temporal distinguishability of a four-photon state and a six-photon state, both from parametric down-conversion. The experiment is based on a multi-photon interference scheme in a recent discovered NOON-state projection measurement. By measuring the visibility of the interference dip, we can distinguish the various scenarios in the temporal distribution of the pairs and thus quantitatively determine the degree of temporal (in)distinguishability of a multi-photon state

    An experimental investigation of criteria for continuous variable entanglement

    Get PDF
    We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88] and inseparability [Duan00] criteria, with observed results of Δ2Xx∣y+Δ2Xx∣y−=0.58±0.02\Delta^{2} X_{x|y}^{+} \Delta^{2} X_{x|y}^{-} = 0.58 \pm 0.02 and Δ2Xx±y+Δ2Xx±y−=0.44±0.01\sqrt{\Delta^{2} X_{x \pm y}^{+} \Delta^{2} X_{x \pm y}^{-}} = 0.44 \pm 0.01, respectively. Both results clearly beat the standard quantum limit of unity. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.Comment: 4 pages, 5 figure

    Experimental investigation of a timber-concrete floor panel system with a hybrid glass fibre reinforced polymer-timber corrugated core

    Get PDF
    Hybrid timber-concrete (HTC) floor systems are well-suited for prefabricated construction and so have seen widespread use in modern sustainable buildings. This paper investigates a novel extension to such systems by introducing a corrugated core between tensile timber and compressive concrete layers. This new ‘HTCC’ floor panel system is hypothesised to have an increased weight-specific flexural capacity relative to HTC systems, by reducing the volume of concrete below the panel neutral axis without decreasing flexural capacity. This paper experimentally investigates the flexural performance of the new system, acting in two configurations: with core orientation parallel to the span for maximum longitudinal one-way spanning capacity; and with core orientation transverse to the span for generation of a novel transverse spanning capacity. In total, eight HTCC floor panels were prepared and tested, with the flexural capacities and critical failure modes analysed for each. Effects of different core geometries, shear force transfer methods, and manifested composite action are also closely studied. Longitudinal specimens achieved the best composite action and correspondingly the highest panel performance, with a 73% ultimate moment carrying efficiency and an 85% stiffness efficiency at SLS, compared to an idealised HTC section with full composite action

    Generalized W-Class State and its Monogamy Relation

    Full text link
    We generalize the W class of states from nn qubits to nn qudits and prove that their entanglement is fully characterized by their partial entanglements even for the case of the mixture that consists of a W-class state and a product state ∣0⟩⊗n\ket{0}^{\otimes n}.Comment: 12 pages, 1 figur

    A hybrid reconstruction algorithm for 3-D ionospheric tomography

    Get PDF
    In this paper, a hybrid reconstruction algorithm (HRA) is presented to solve the ill-posed inverse problem associated with 3-D ionospheric stochastic tomography. In this new method, the ionospheric electron density (IED) can be inverted by using two steps. First, a truncated singular value decomposition (TSVD) method, whose value is independent on any initial estimation, is used to resolve the ill-posed problem of the tomography system. Second, taking into account the "approximation" of its solution, an iterative improvement process of the solution is then implemented by utilizing the conventional algebraic reconstruction algorithm (ART). The HRA, therefore, offers a more reasonable approach to choose an initial approximate for the ART and to improve the quality of the final reconstructed image. A simulated experiment demonstrates that the HRA method is superior to the TSVD or the ART alone for the tomographic inversion of IED. Finally, the HRA is used to perform GPS-based tomographic reconstruction of the IED at mid- and low-latitude regions

    Three-dimensional ionospheric tomography algebraic reconstruction technique

    Get PDF
    An improved algebraic reconstruction technique (IART) is presented for the tomographic reconstruction of ionospheric electron density (IED). This method applies the total electron content (TEC) measurements to invert the spatial distribution of the IED from a set of apriori IED distributions. In this new method, a data-driven adjustment of the relaxation parameter is performed to improve the computation efficiency and image quality of the classical algebraic reconstruction technique (ART). In addition, the new algorithm is also combined with ionospheric space discretization technique to simplify the inversion of IED, and it applies CHAMP occultation data to improve the vertical resolution. A numerical simulation experiment is carried out to validate the reliability of the new method. It is then applied to the inversion of IED from real GPS data. Inverted results show that the IART algorithm has better accuracy and efficiency than the conventional ART algorithm. The reliability of the IART algorithm is also validated by ionosonde data recorded at Wuhan station

    Quantum interference of single photons from remote nitrogen-vacancy centers in diamond

    Get PDF
    We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g(2)(0)=0.35±0.04<0.5g^{(2)}(0) = 0.35 \pm 0.04<0.5. In addition, optical transition frequencies of two separated NV centers are tuned into resonance with each other by applying external electric fields. Extension of the present approach to generate entanglement of remote solid-state qubits is discussed.Comment: 5 pages, 3 figure
    • 

    corecore