567 research outputs found

    Coexistence of charge density wave and spin-Peierls orders in quarter-filled quasi-one dimensional correlated electron systems

    Full text link
    Charge and spin-Peierls instabilities in quarter-filled (n=1/2) compounds consisting of coupled ladders and/or zig-zag chains are investigated. Hubbard and t-J models including local Holstein and/or Peierls couplings to the lattice are studied by numerical techniques. Next nearest neighbor hopping and magnetic exchange, and short-range Coulomb interactions are also considered. We show that, generically, these systems undergo instabilities towards the formation of Charge Density Waves, Bond Order Waves and (generalized) spin-Peierls modulated structures. Moderate electron-electron and electron-lattice couplings can lead to a coexistence of these three types of orders. In the ladder, a zig-zag pattern is stabilized by the Holstein coupling and the nearest-neighbor Coulomb repulsion. In the case of an isolated chain, bond-centered and site-centered 2k_F and 4k_F modulations are induced by the local Holstein coupling. In addition, we show that, in contrast to the ladders, a small charge ordering in the chains, strongly enhances the spin-Peierls instability. Our results are applied to the NaV_2O_5 compound (trellis lattice) and various phases with coexisting charge disproportionation and spin-Peierls order are proposed and discussed in the context of recent experiments. The role of the long-range Coulomb potential is also outlined.Comment: 10 pages, Revtex, 10 encapsulated figure

    Tachyon Kinks in Boundary String Field Theory

    Full text link
    We study tachyon kinks with and without electromagnetic fields in the context of boundary string field theory. For the case of pure tachyon only an array of kink-antikink is obtained. In the presence of electromagnetic coupling, all possible static codimension-one soliton solutions such as array of kink-antikink, single topological BPS kink, bounce, half kink, as well as nonBPS topological kink are found, and their properties including the interpretation as branes are analyzed in detail. Spectrum of the obtained kinks coincides with that of Dirac-Born-Infeld type effective theory.Comment: LaTex, 29 pages, 17 Figure

    Spectral analysis of Gene co-expression network of Zebrafish

    Full text link
    We analyze the gene expression data of Zebrafish under the combined framework of complex networks and random matrix theory. The nearest neighbor spacing distribution of the corresponding matrix spectra follows random matrix predictions of Gaussian orthogonal statistics. Based on the eigenvector analysis we can divide the spectra into two parts, first part for which the eigenvector localization properties match with the random matrix theory predictions, and the second part for which they show deviation from the theory and hence are useful to understand the system dependent properties. Spectra with the localized eigenvectors can be characterized into three groups based on the eigenvalues. We explore the position of localized nodes from these different categories. Using an overlap measure, we find that the top contributing nodes in the different groups carry distinguished structural features. Furthermore, the top contributing nodes of the different localized eigenvectors corresponding to the lower eigenvalue regime form different densely connected structure well separated from each other. Preliminary biological interpretation of the genes, associated with the top contributing nodes in the localized eigenvectors, suggests that the genes corresponding to same vector share common features.Comment: 6 pages, four figures (accepted in EPL

    Competition of Dimerization and Charge Ordering in the Spin-Peierls State of Organic Conductors

    Full text link
    The effect of the charge ordering on the spin-Peierls (SP) state has been examined by using a Peierls-Hubbard model at quarter-filling with dimerization, on-site and nearest-neighbor repulsive interactions. By taking account of the presence of dimerization, a bond distortion is calculated variationally with the renormalization group method based on bosonization. When the charge ordering appears at V=V_c with increasing the nearest-neighbor interaction (V), the distortion exhibits a maximum due to competition between the dimerization and the charge ordering. It is shown that the second-order phase transition occurs from the SP state with the bond alternation to a mixed state with an additional component of the site alternationat V = V_c.Comment: 11 pages, 13 figures, to be published in J. Phys. Soc. Jpn. 72 No.6 (2003

    Re-integerization of fractional charges in the correlated quarter-filled band

    Full text link
    Previous work has demonstrated the existence of soliton defect states with charges +/- e/2 in the limits of zero and of infinite on-site Coulomb interactions in the one-dimensional (1D) quarter-filled band. For large but finite on-site Coulomb interaction, the low temperature 2k_F bond distortion that occurs within the 4k_F bond-distorted phase is accompanied by charge-ordering on the sites. We show that a ``re-integerization'' of the defect charge occurs in this bond-charge density wave (BCDW) state due to a ``binding'' of the fractional charges. We indicate briefly possible implications of this result for mechanisms of organic superconductivity.Comment: 4 eps figure

    Charge and spin order in one-dimensional electron systems with long-range Coulomb interactions

    Full text link
    We study a system of electrons interacting through long--range Coulomb forces on a one--dimensional lattice, by means of a variational ansatz which is the strong--coupling counterpart of the Gutzwiller wave function. Our aim is to describe the quantum analogue of Hubbard's classical ``generalized Wigner crystal''. We first analyse charge ordering in a system of spinless fermions, with particular attention to the effects of lattice commensurability. We argue that for a general (rational) number of electrons per site nn there are three regimes, depending on the relative strength VV of the long--range Coulomb interaction (as compared to the hopping amplitude tt). For very large VV the quantum ground state differs little from Hubbard's classical solution, for intermediate to large values of VV we recover essentially the Wigner crystal of the continuum model, and for small VV the charge modulation amounts to a small--amplitude charge--density wave. We then include the spin degrees of freedom and show that in the Wigner crystal regimes (i.e. for large VV) they are coupled by an antiferromagnetic kinetic exchange JJ, which turns out to be smaller than the energy scale governing the charge degrees of freedom. Our results shed new light on the insulating phases of organic quasi--1D compounds where the long--range part of the interaction is unscreened, and magnetic and charge orderings coexist at low temperatures.Comment: 11 pages, 7 figures, accepted for publication on Phys. Rev.

    The Electric Dipole Moment of the Nucleons in Holographic QCD

    Full text link
    We introduce the strong CP-violation in the framework of AdS/QCD model and calculate the electric dipole moments of nucleons as well as the CP-violating pion-nucleon coupling. Our holographic estimate of the electric dipole moments gives for the neutron d_n=1.08 X 10^{-16} theta (e cm), which is comparable with previous estimates. We also predict that the electric dipole moment of the proton should be precisely the minus of the neutron electric dipole moment, thus leading to a new sum rule on the electric dipole moments of baryons.Comment: 22 pages, no figures. v2: A reference and an acknowledgment added. v3: One more reference, to appear in JHE

    Finite-temperature phase transitions in quasi-one-dimensional molecular conductors

    Full text link
    Phase transitions in 1/4-filled quasi-one-dimensional molecular conductors are studied theoretically on the basis of extended Hubbard chains including electron-lattice interactions coupled by interchain Coulomb repulsion. We apply the numerical quantum transfer-matrix method to an effective one-dimensional model, treating the interchain term within mean-field approximation. Finite-temperature properties are investigated for the charge ordering, the "dimer Mott" transition (bond dimerization), and the spin-Peierls transition (bond tetramerization). A coexistent state of charge order and bond dimerization exhibiting dielectricity is predicted in a certain parameter range, even when intrinsic dimerization is absent.Comment: to be published in J. Phys. Soc. Jpn., Vol. 76 (2007) No. 1 (5 pages, 4 figures); typo correcte

    Dynamics of Baryons from String Theory and Vector Dominance

    Get PDF
    We consider a holographic model of QCD from string theory, a la Sakai and Sugimoto, and study baryons. In this model, mesons are collectively realized as a five-dimensional \U(NF)=U(1)×SU(NF)U(N_F)=U(1)\times SU(N_F) Yang-Mills field and baryons are classically identified as SU(NF)SU(N_F) solitons with a unit Pontryagin number and NcN_c electric charges. The soliton is shown to be very small in the large 't Hooft coupling limit, allowing us to introduce an effective field B{\cal B}. Its coupling to the mesons are dictated by the soliton structure, and consists of a direct magnetic coupling to the SU(NF)SU(N_F) field strength as well as a minimal coupling to the U(NF)U(N_F) gauge field. Upon the dimensional reduction, this effective action reproduces all interaction terms between nucleons and an infinite tower of mesons in a manner consistent with the large NcN_c expansion. We further find that all electromagnetic interactions, as inferred from the same effective action via a holographic prescription, are mediated by an infinite tower of vector mesons, rendering the baryon electromagnetic form factors completely vector-dominated as well. We estimate nucleon-meson couplings and also the anomalous magnetic moments, which compare well with nature.Comment: 65pages, 3 figures, vector mesons and axial-vector mesons are now canonically normalized (comparisons with data and conclusions unaffected
    corecore