38,926 research outputs found

    ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)

    Full text link
    We present ExplainIt!, a declarative, unsupervised root-cause analysis engine that uses time series monitoring data from large complex systems such as data centres. ExplainIt! empowers operators to succinctly specify a large number of causal hypotheses to search for causes of interesting events. ExplainIt! then ranks these hypotheses, reducing the number of causal dependencies from hundreds of thousands to a handful for human understanding. We show how a declarative language, such as SQL, can be effective in declaratively enumerating hypotheses that probe the structure of an unknown probabilistic graphical causal model of the underlying system. Our thesis is that databases are in a unique position to enable users to rapidly explore the possible causal mechanisms in data collected from diverse sources. We empirically demonstrate how ExplainIt! had helped us resolve over 30 performance issues in a commercial product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201

    Comment on ``Consistent Sets Yield Contrary Inferences in Quantum Theory''

    Get PDF
    In a recent paper Kent has pointed out that in consistent histories quantum theory it is possible, given initial and final states, to construct two different consistent families of histories, in each of which there is a proposition that can be inferred with probability one, and such that the projectors representing these two propositions are mutually orthogonal. In this note we stress that, according to the rules of consistent history reasoning two such propositions are not contrary in the usual logical sense namely, that one can infer that if one is true then the other is false, and both could be false. No single consistent family contains both propositions, together with the initial and final states, and hence the propositions cannot be logically compared. Consistent histories quantum theory is logically consistent, consistent with experiment as far as is known, consistent with the usual quantum predictions for measurements, and applicable to the most general physical systems. It may not be the only theory with these properties, but in our opinion, it is the most promising among present possibilities.Comment: 2pages, uses REVTEX 3.

    Through-Skin Pilot-Hole Detection and Localisation with a Mechanically-Translatable Atomic Magnetometer

    Get PDF
    We demonstrate through-skin electromagnetic induction imaging of pilot-holes in an aluminum block concealed by a 0.41 mm thick aluminum shield with a 1.49 kg mechanically translatable radio frequency atomic magnetometer. The pilot-holes are identified and localized with submillimeter accuracy both with and without the Al shield. We utilize a dual-frequency technique to isolate the image of the target while removing the effect of the shielding from the image. Imaging accuracy is shown to be robust in a range of different operating conditions and immune to the effect of a thermal insulator between the shielding and the target. The approach introduced here finds direct application in aircraft wing manufacture and is competitive with existing approaches

    Imaging corrosion under insulation with a mechanically-translatable atomic magnetometer

    Get PDF
    This work addresses the issue of imaging of corrosion under insulation in pipelines. We demonstrate imaging of recesses of variable depth in an aluminium plate covered by insulation, using a mechanical-translatable atomic magnetometer. This work validates the technology in settings close to real-world scenarios. The technology is of direct impact to the Oil & Gas Industry

    Fungicidal preparations from Inula viscose

    Get PDF
    Inula viscosa is a perennial plant native to the Mediterranean Basin. Extracts made from the shoots of this plant exhibited a strong fungicidal activity in vitro and in vivo. TLC analyses revealed at least 7 fungicidal compounds. Most are lipophilic. When such extracts were sprayed on the leaf surface of crop plants they effectively controlled downy mildew in grape, cucumber and tabacco; late blight in potato and tomato; gray mold in cucumber and tomato; and, powdery mildew in cucurbits and cereals. Field experiments conducted with grape vine resulted in effective control of Plasmopara viticola. The data suggest that Inula viscosa is a useful source of herbal fungicidal preparations for agricultural use

    Tunable far-infrared laser spectroscopy of hydrogen bonds: The K_a = O(u)→1(g) rotation-tunneling spectrum of the HCI dimer

    Get PDF
    The ground state K_a =0(u)→1(g) b‐type subband of the rotation–tunneling spectrum of the symmetric ^(35)Cl–^(35)Cl,^(37)Cl–^(37)Cl, and the mixed ^(35)Cl–^(37)Cl hydrogen chloride dimers have been recorded near 26.3 cm^(−1) with sub‐Doppler resolution in a continuous two‐dimensional supersonic jet with a tunable far‐infrared laser spectrometer. Quadrupole hyperfine structure from the chlorine nuclei has been resolved. From the fitted rotational constants a (H^(35)Cl)_2 center‐of‐mass separation of 3.81 Å is derived for the K_a =1(g) levels, while the nuclear quadrupole coupling constants yield a vibrationally averaged angular structure for both tunneling states of approximately 20–25 deg for the hydrogen bonded proton and at least 70–75 deg for the external proton. This nearly orthogonal structure agrees well with that predicted by ab initio theoretical calculations, but the observed splittings and intensity alterations of the lines indicate that the chlorine nuclei are made equivalent by a large amplitude tunneling motion of the HCl monomers. A similar geared internal rotation tunneling motion has been found for the HF dimer, but here the effect is much greater. The ground state tunneling splittings are estimated to lie between 15–18 cm^(−1), and the selection rules observed indicate that the trans tunneling path dominates the large amplitude motion, as expected, provided the dimer remains planar. From the observed hyperfine constants, we judge the dimer and its associated tunneling motion to be planar to within 10°

    Absence of Magnetism in Hcp Iron-Nickel at 11 K

    Get PDF
    Synchrotron Mössbauer spectroscopy (SMS) was performed on an hcp-phase alloy of composition Fe92Ni8 at a pressure of 21 GPa and a temperature of 11 K. Density functional theoretical calculations predict antiferromagnetism in both hcp Fe and hcp Fe-Ni. For hcp Fe, these calculations predict no hyperfine magnetic field, consistent with previous experiments. For hcp Fe-Ni, however, substantial hyperfine magnetic fields are predicted, but these were not observed in the SMS spectra. Two possible explanations are suggested. First, small but significant errors in the generalized gradient approximation density functional may lead to an erroneous prediction of magnetic order or of erroneous hyperfine magnetic fields in antiferromagnetic hcp Fe-Ni. Alternately, quantum fluctuations with periods much shorter than the lifetime of the nuclear excited state would prohibit the detection of moments by SMS

    Fractional photon-assisted tunneling in an optical superlattice: large contribution to particle transfer

    Full text link
    Fractional photon-assisted tunneling is investigated both analytically and numerically for few interacting ultra-cold atoms in the double-wells of an optical superlattice. This can be realized experimentally by adding periodic shaking to an existing experimental setup [Phys. Rev. Lett. 101, 090404 (2008)]. Photon-assisted tunneling is visible in the particle transfer between the wells of the individual double wells. In order to understand the physics of the photon-assisted tunneling, an effective model based on the rotating wave approximation is introduced. The validity of this effective approach is tested for wide parameter ranges which are accessible to experiments in double-well lattices. The effective model goes well beyond previous perturbation theory approaches and is useful to investigate in particular the fractional photon-assisted tunneling resonances. Analytic results on the level of the experimentally realizable two-particle quantum dynamics show very good agreement with the numerical solution of the time-dependent Schr\"odinger equation. Far from being a small effect, both the one-half-photon and the one-third-photon resonance are shown to have large effects on the particle transfer.Comment: 9 pages, 11 png-figure

    Meanfield treatment of Bragg scattering from a Bose-Einstein condensate

    Full text link
    A unified semiclassical treatment of Bragg scattering from Bose-Einstein condensates is presented. The formalism is based on the Gross-Pitaevskii equation driven by classical light fields far detuned from atomic resonance. An approximate analytic solution is obtained and provides quantitative understanding of the atomic momentum state oscillations, as well as a simple expression for the momentum linewidth of the scattering process. The validity regime of the analytic solution is derived, and tested by three dimensional cylindrically symmetric numerical simulations.Comment: 21 pages, 10 figures. Minor changes made to documen
    • 

    corecore