38,926 research outputs found
ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)
We present ExplainIt!, a declarative, unsupervised root-cause analysis engine
that uses time series monitoring data from large complex systems such as data
centres. ExplainIt! empowers operators to succinctly specify a large number of
causal hypotheses to search for causes of interesting events. ExplainIt! then
ranks these hypotheses, reducing the number of causal dependencies from
hundreds of thousands to a handful for human understanding. We show how a
declarative language, such as SQL, can be effective in declaratively
enumerating hypotheses that probe the structure of an unknown probabilistic
graphical causal model of the underlying system. Our thesis is that databases
are in a unique position to enable users to rapidly explore the possible causal
mechanisms in data collected from diverse sources. We empirically demonstrate
how ExplainIt! had helped us resolve over 30 performance issues in a commercial
product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201
Comment on ``Consistent Sets Yield Contrary Inferences in Quantum Theory''
In a recent paper Kent has pointed out that in consistent histories quantum
theory it is possible, given initial and final states, to construct two
different consistent families of histories, in each of which there is a
proposition that can be inferred with probability one, and such that the
projectors representing these two propositions are mutually orthogonal. In this
note we stress that, according to the rules of consistent history reasoning two
such propositions are not contrary in the usual logical sense namely, that one
can infer that if one is true then the other is false, and both could be false.
No single consistent family contains both propositions, together with the
initial and final states, and hence the propositions cannot be logically
compared. Consistent histories quantum theory is logically consistent,
consistent with experiment as far as is known, consistent with the usual
quantum predictions for measurements, and applicable to the most general
physical systems. It may not be the only theory with these properties, but in
our opinion, it is the most promising among present possibilities.Comment: 2pages, uses REVTEX 3.
Through-Skin Pilot-Hole Detection and Localisation with a Mechanically-Translatable Atomic Magnetometer
We demonstrate through-skin electromagnetic induction imaging of pilot-holes in an aluminum block concealed by a 0.41 mm thick aluminum shield with a 1.49 kg mechanically translatable radio frequency atomic magnetometer. The pilot-holes are identified and localized with
submillimeter accuracy both with and without the Al shield. We utilize a dual-frequency technique to isolate the image of the target while
removing the effect of the shielding from the image. Imaging accuracy is shown to be robust in a range of different operating conditions and
immune to the effect of a thermal insulator between the shielding and the target. The approach introduced here finds direct application in
aircraft wing manufacture and is competitive with existing approaches
Imaging corrosion under insulation with a mechanically-translatable atomic magnetometer
This work addresses the issue of imaging of corrosion under insulation in pipelines. We demonstrate imaging of recesses of variable depth in an aluminium plate covered by insulation, using a mechanical-translatable atomic magnetometer. This work validates the technology in settings close to real-world scenarios. The technology is of direct impact to the Oil & Gas Industry
Fungicidal preparations from Inula viscose
Inula viscosa is a perennial plant native to the Mediterranean Basin. Extracts made from the shoots of this plant exhibited a strong fungicidal activity in vitro and in vivo. TLC analyses revealed at least 7 fungicidal compounds. Most are lipophilic. When such extracts were sprayed on the leaf surface of crop plants they effectively controlled downy mildew in grape, cucumber and tabacco; late blight in potato and tomato; gray mold in cucumber and tomato; and, powdery mildew in cucurbits and cereals. Field experiments conducted with grape vine resulted in effective control of Plasmopara viticola. The data suggest that Inula viscosa is a useful source of herbal fungicidal preparations for agricultural use
Tunable far-infrared laser spectroscopy of hydrogen bonds: The K_a = O(u)â1(g) rotation-tunneling spectrum of the HCI dimer
The ground state K_a =0(u)â1(g) bâtype subband of the rotationâtunneling spectrum of the symmetric ^(35)Clâ^(35)Cl,^(37)Clâ^(37)Cl, and the mixed ^(35)Clâ^(37)Cl hydrogen chloride dimers have been recorded near 26.3 cm^(â1) with subâDoppler resolution in a continuous twoâdimensional supersonic jet with a tunable farâinfrared laser spectrometer. Quadrupole hyperfine structure from the chlorine nuclei has been resolved. From the fitted rotational constants a (H^(35)Cl)_2 centerâofâmass separation of 3.81 Ă
is derived for the K_a =1(g) levels, while the nuclear quadrupole coupling constants yield a vibrationally averaged angular structure for both tunneling states of approximately 20â25 deg for the hydrogen bonded proton and at least 70â75 deg for the external proton. This nearly orthogonal structure agrees well with that predicted by ab initio theoretical calculations, but the observed splittings and intensity alterations of the lines indicate that the chlorine nuclei are made equivalent by a large amplitude tunneling motion of the HCl monomers. A similar geared internal rotation tunneling motion has been found for the HF dimer, but here the effect is much greater. The ground state tunneling splittings are estimated to lie between 15â18 cm^(â1), and the selection rules observed indicate that the trans tunneling path dominates the large amplitude motion, as expected, provided the dimer remains planar. From the observed hyperfine constants, we judge the dimer and its associated tunneling motion to be planar to within 10°
Absence of Magnetism in Hcp Iron-Nickel at 11 K
Synchrotron Mössbauer spectroscopy (SMS) was performed on an hcp-phase alloy of composition Fe92Ni8 at a pressure of 21 GPa and a temperature of 11 K. Density functional theoretical calculations predict antiferromagnetism in both hcp Fe and hcp Fe-Ni. For hcp Fe, these calculations predict no hyperfine magnetic field, consistent with previous experiments. For hcp Fe-Ni, however, substantial hyperfine magnetic fields are predicted, but these were not observed in the SMS spectra. Two possible explanations are suggested. First, small but significant errors in the generalized gradient approximation density functional may lead to an erroneous prediction of magnetic order or of erroneous hyperfine magnetic fields in antiferromagnetic hcp Fe-Ni. Alternately, quantum fluctuations with periods much shorter than the lifetime of the nuclear excited state would prohibit the detection of moments by SMS
Fractional photon-assisted tunneling in an optical superlattice: large contribution to particle transfer
Fractional photon-assisted tunneling is investigated both analytically and
numerically for few interacting ultra-cold atoms in the double-wells of an
optical superlattice. This can be realized experimentally by adding periodic
shaking to an existing experimental setup [Phys. Rev. Lett. 101, 090404
(2008)]. Photon-assisted tunneling is visible in the particle transfer between
the wells of the individual double wells. In order to understand the physics of
the photon-assisted tunneling, an effective model based on the rotating wave
approximation is introduced. The validity of this effective approach is tested
for wide parameter ranges which are accessible to experiments in double-well
lattices. The effective model goes well beyond previous perturbation theory
approaches and is useful to investigate in particular the fractional
photon-assisted tunneling resonances. Analytic results on the level of the
experimentally realizable two-particle quantum dynamics show very good
agreement with the numerical solution of the time-dependent Schr\"odinger
equation. Far from being a small effect, both the one-half-photon and the
one-third-photon resonance are shown to have large effects on the particle
transfer.Comment: 9 pages, 11 png-figure
Meanfield treatment of Bragg scattering from a Bose-Einstein condensate
A unified semiclassical treatment of Bragg scattering from Bose-Einstein
condensates is presented. The formalism is based on the Gross-Pitaevskii
equation driven by classical light fields far detuned from atomic resonance. An
approximate analytic solution is obtained and provides quantitative
understanding of the atomic momentum state oscillations, as well as a simple
expression for the momentum linewidth of the scattering process. The validity
regime of the analytic solution is derived, and tested by three dimensional
cylindrically symmetric numerical simulations.Comment: 21 pages, 10 figures. Minor changes made to documen
- âŠ