9,812,334 research outputs found

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Quantum-Gravity Fluctuations and the Black-Hole Temperature

    Get PDF
    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the {\it discrete} quantum spectrum suggested by Bekenstein with the {\it continuous} semi-classical spectrum suggested by Hawking ? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the {\it discrete} (quantized) black-hole radiation agrees with the well-known Hawking temperature of the {\it continuous} (semi-classical) black-hole spectrum.Comment: 6 page

    Revisiting a model-independent dark energy reconstruction method

    Full text link
    Model independent reconstructions of dark energy have received some attention. The approach that addresses the reconstruction of the dimensionless coordinate distance and its two first derivatives using a polynomial fit in different redshift windows is well developed \cite{DalyDjorgovski1,DalyDjorgovski2,DalyDjorgovski3}. In this work we offer new insights into the problem by focusing on two types of observational probes: SNeIa and GRBs. Our results allow to highlight some of the intrinsic weaknesses of the method. One of the directions we follow is to consider updated observational samples. Our results indicate than conclusions on the main dark energy features as drawn from this method are intimately related to the features of the samples themselves (which are not quite ideal). This is particularly true of GRBs, which manifest themselves as poor performers in this context. In contrast to original works, we conclude they cannot be used for cosmological purposes, and the state of the art does not allow to regard them on the same quality basis as SNeIa. The next direction we contribute to is the question of how the adjusting of some parameters (window width, overlap, selection criteria) affect the results. We find again there is a considerable sensitivity to these features. Then, we try to establish what is the current redshift range for which one can make solid predictions on dark energy evolution. Finally, we strengthen the former view that this model is modest in the sense it provides only a picture of the global trend. But, on the other hand, we believe it offers an interesting complement to other approaches given that it works on minimal assumptions.Comment: revtex4-1, 17 page

    Pairing and persistent currents - the role of the far levels

    Full text link
    We calculate the orbital magnetic response to Aharonov Bohm flux of disordered metallic rings with attractive pairing interaction. We consider the reduced BCS model, and obtain the result as an expansion of its exact solution to first order in the interaction. We emphasize the connection between the large magnetic response and the finite occupation of high energy levels in the many-body ground state of the ring.Comment: 10 pages, contribution to MS+S200

    The Hawking evaporation process of rapidly-rotating black holes: An almost continuous cascade of gravitons

    Get PDF
    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio Ď„gap/Ď„emission=O(1)\tau_{\text{gap}}/\tau_{\text{emission}}=O(1), where Ď„gap\tau_{\text{gap}} is the average time gap between the emission of successive Hawking quanta and Ď„emission\tau_{\text{emission}} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process.Comment: 3 page

    Some Z2\mathbf{Z}_2-invariant Variables: Constructed of the Scalars Dilaton and Axion

    Get PDF
    Using the dilaton scalar and axion pseudoscalar fields we construct a number of scalars and differential forms which are symmetric under the Z2\mathbf{Z}_2-subgroup of the group SL(2,R)SL(2, \mathbf{R}). These invariants enable us to establish various 10-dimensional invariant actions. Other invariants which are not independent from the previous ones will be detached.Comment: 11 pages, Latex, No figure. In the revised version some interpretations have been improve

    Extremal Segments in Random Sequences

    Full text link
    We investigate the probability for the largest segment in with total displacement QQ in an NN-step random walk to have length LL. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large NN limit. In particular, the size of the longest loop has a distribution with a square-root singularity at ℓ≡L/N=1\ell\equiv L/N=1, an essential singularity at ℓ=0\ell=0, and a discontinuous derivative at ℓ=1/2\ell=1/2.Comment: 3 pages, REVTEX 3.0, with multicol.sty, epsf.sty and EPS figures appended via uufiles. (Email in case of trouble.) CHANGES: Missing figure added to figures.uu MIT-CMT-KE-94-

    Coevolution of Glauber-like Ising dynamics on typical networks

    Full text link
    We consider coevolution of site status and link structures from two different initial networks: a one dimensional Ising chain and a scale free network. The dynamics is governed by a preassigned stability parameter SS, and a rewiring factor Ď•\phi, that determines whether the Ising spin at the chosen site flips or whether the node gets rewired to another node in the system. This dynamics has also been studied with Ising spins distributed randomly among nodes which lie on a network with preferential attachment. We have observed the steady state average stability and magnetisation for both kinds of systems to have an idea about the effect of initial network topology. Although the average stability shows almost similar behaviour, the magnetisation depends on the initial condition we start from. Apart from the local dynamics, the global effect on the dynamics has also been studied. These parameters show interesting variations for different values of SS and Ď•\phi, which helps in determining the steady-state condition for a given substrate.Comment: 8 pages, 10 figure
    • …
    corecore