1,371 research outputs found
Quantum secure direct communication network with superdense coding and decoy photons
A quantum secure direct communication network scheme is proposed with quantum
superdense coding and decoy photons. The servers on a passive optical network
prepare and measure the quantum signal, i.e., a sequence of the -dimensional
Bell states. After confirming the security of the photons received from the
receiver, the sender codes his secret message on them directly. For preventing
a dishonest server from eavesdropping, some decoy photons prepared by measuring
one photon in the Bell states are used to replace some original photons. One of
the users on the network can communicate any other one. This scheme has the
advantage of high capacity, and it is more convenient than others as only a
sequence of photons is transmitted in quantum line.Comment: 6 pages, 2 figur
Multiparty Quantum Secret Report
A multiparty quantum secret report scheme is proposed with quantum
encryption. The boss Alice and her agents first share a sequence of
(+1)-particle Greenberger--Horne--Zeilinger (GHZ) states that only Alice
knows which state each (+1)-particle quantum system is in. Each agent
exploits a controlled-not (CNot) gate to encrypt the travelling particle by
using the particle in the GHZ state as the control qubit. The boss Alice
decrypts the travelling particle with a CNot gate after performing a
operation on her particle in the GHZ state or not. After the GHZ states (the
quantum key) are used up, the parties check whether there is a vicious
eavesdropper, say Eve, monitoring the quantum line, by picking out some samples
from the GHZ states shared and measure them with two measuring bases. After
confirming the security of the quantum key, they use the GHZ states remained
repeatedly for next round of quantum communication. This scheme has the
advantage of high intrinsic efficiency for qubits and the total efficiency.Comment: 4 pages, no figure
Efficient quantum cryptography network without entanglement and quantum memory
An efficient quantum cryptography network protocol is proposed with
d-dimension polarized photons, without resorting to entanglement and quantum
memory. A server on the network, say Alice, provides the service for preparing
and measuring single photons whose initial state are |0>. The users code the
information on the single photons with some unitary operations. For preventing
the untrustworthy server Alice from eavesdropping the quantum lines, a
nonorthogonal-coding technique (decoy-photon technique) is used in the process
that the quantum signal is transmitted between the users. This protocol does
not require the servers and the users to store the quantum state and almost all
of the single photons can be used for carrying the information, which makes it
more convenient for application than others with present technology. We also
discuss the case with a faint laser pulse.Comment: 4 pages, 1 figures. It also presented a way for preparing decoy
photons without a sinigle-photon sourc
Measurements of the Cross Section for e+e- -> hadrons at Center-of-Mass Energies from 2 to 5 GeV
We report values of for 85 center-of-mass energies between
2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing
Electron-Positron Collider.Comment: 5 pages, 3 figure
First Measurement of the Branching Fraction of the Decay psi(2S) --> tau tau
The branching fraction of the psi(2S) decay into tau pair has been measured
for the first time using the BES detector at the Beijing Electron-Positron
Collider. The result is ,
where the first error is statistical and the second is systematic. This value,
along with those for the branching fractions into e+e- and mu+mu of this
resonance, satisfy well the relation predicted by the sequential lepton
hypothesis. Combining all these values with the leptonic width of the resonance
the total width of the psi(2S) is determined to be keV.Comment: 9 pages, 2 figure
Urban energy consumption and CO2 emissions in Beijing: current and future
This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
Fully gapped topological surface states in BiSe films induced by a d-wave high-temperature superconductor
Topological insulators are a new class of materials, that exhibit robust
gapless surface states protected by time-reversal symmetry. The interplay
between such symmetry-protected topological surface states and symmetry-broken
states (e.g. superconductivity) provides a platform for exploring novel quantum
phenomena and new functionalities, such as 1D chiral or helical gapless
Majorana fermions, and Majorana zero modes which may find application in
fault-tolerant quantum computation. Inducing superconductivity on topological
surface states is a prerequisite for their experimental realization. Here by
growing high quality topological insulator BiSe films on a d-wave
superconductor BiSrCaCuO using molecular beam epitaxy,
we are able to induce high temperature superconductivity on the surface states
of BiSe films with a large pairing gap up to 15 meV. Interestingly,
distinct from the d-wave pairing of BiSrCaCuO, the
proximity-induced gap on the surface states is nearly isotropic and consistent
with predominant s-wave pairing as revealed by angle-resolved photoemission
spectroscopy. Our work could provide a critical step toward the realization of
the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274
Recent changes of water discharge and sediment load in the Yellow River basin, China
The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613
Improved Measurement of Electron Antineutrino Disappearance at Daya Bay
We report an improved measurement of the neutrino mixing angle
from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for
with a significance of 7.7 standard deviations. Electron
antineutrinos from six reactors of 2.9 GW were detected in six
antineutrino detectors deployed in two near (flux-weighted baselines of 470 m
and 576 m) and one far (1648 m) underground experimental halls. Using 139 days
of data, 28909 (205308) electron antineutrino candidates were detected at the
far hall (near halls). The ratio of the observed to the expected number of
antineutrinos assuming no oscillations at the far hall is . An analysis of the relative rates in six
detectors finds in a three-neutrino framework.Comment: 21 pages, 24 figures. Submitted to and accepted by Chinese Physics C.
Two typos were corrected. Description improve
- …
