303,803 research outputs found
Modelling galaxy stellar mass evolution from z~0.8 to today
We apply the empirical method built for z=0 in the previous work of Wang et
al. to a higher redshift, to link galaxy stellar mass directly with its hosting
dark matter halo mass at z~0.8. The relation of the galaxy stellar mass and the
host halo mass M_infall is constrained by fitting both the stellar mass
function and the correlation functions at different stellar mass intervals of
the VVDS observation, where M_infall is the mass of the hosting halo at the
time when the galaxy was last the central galaxy. We find that for low mass
haloes, their residing central galaxies are less massive at high redshift than
those at low redshift. For high mass haloes, central galaxies in these haloes
at high redshift are a bit more massive than the galaxies at low redshift.
Satellite galaxies are less massive at earlier times, for any given mass of
hosting haloes. Fitting both the SDSS and VVDS observations simultaneously, we
also propose a unified model of the M_stars-M_infall relation, which describes
the evolution of central galaxy mass as a function of time. The stellar mass of
a satellite galaxy is determined by the same M_stars-M_infall relation of
central galaxies at the time when the galaxy is accreted. With these models, we
study the amount of galaxy stellar mass increased from z~0.8 to the present day
through galaxy mergers and star formation. Low mass galaxies gain their stellar
masses from z~0.8 to z=0 mainly through star formation. For galaxies of higher
mass, the increase of stellar mass solely through mergers from z=0.8 can make
the massive galaxies a factor ~2 larger than observed at z=0. We can also
predict stellar mass functions of redshifts up to z~3, and the results are
consistent with the latest observations.Comment: 12 pages, 10 figures, accepted for publication in MNRA
Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory
Based on a large component QCD derived directly from full QCD by integrating
over the small components of quark fields with , an
alternative quantization procedure is adopted to establish a basic theoretical
framework of heavy quark effective field theory (HQEFT) in the sense of
effective quantum field theory. The procedure concerns quantum generators of
Poincare group, Hilbert and Fock space, anticommutations and velocity
super-selection rule, propagator and Feynman rules, finite mass corrections,
trivialization of gluon couplings and renormalization of Wilson loop. The
Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated.
Some new symmetries in the infinite mass limit are discussed. Weak transition
matrix elements and masses of hadrons in HQEFT are well defined to display a
manifest spin-flavor symmetry and corrections. A simple trace
formulation approach is explicitly demonstrated by using LSZ reduction formula
in HQEFT, and shown to be very useful for parameterizing the transition form
factors via expansion. As the heavy quark and antiquark fields in HQEFT
are treated on the same footing in a fully symmetric way, the quark-antiquark
coupling terms naturally appear and play important roles for simplifying the
structure of transition matrix elements, and for understanding the concept of
`dressed heavy quark' - hadron duality. In the case that the `longitudinal' and
`transverse' residual momenta of heavy quark are at the same order of power
counting, HQEFT provides a consistent approach for systematically analyzing
heavy quark expansion in terms of . Some interesting features in
applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio
Study on the spectrum of the injected relativistic protons
About 10TeV gamma-ray emission within 10 pc region from the Galactic Center
had been reported by 4 independent groups. Considering that this TeV gamma-ray
emission is produced via a hadronic model, and the relativistic protons came
from the tidal disruption of stars by massive black holes, we investigate the
spectral nature of the injected relativistic protons required by the hadronic
model. The calculation was carried on the tidal disruption of the different
types of stars and the different propagation mechanisms of protons in the
interstellar medium. Compared with the observation data from HESS, we find for
the best fitting that the power-law index of the spectrum of the injected
protons is about -1.9, when a red giant star is tidally disrupted, and the
effective confinement of protons diffusion mechanism is adopted.Comment: 2 pages, IAU Symposium 25
- …