41,168 research outputs found
Wet-oxidation waste management system for CELSS
A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification
Behind the success of the quark model
The ground-state three-quark (3Q) potential and the
excited-state 3Q potential are studied using SU(3)
lattice QCD at the quenched level. For more than 300 patterns of the 3Q
systems, the ground-state potential is investigated in
detail in lattice QCD with at and with at . As a result, the ground-state potential is found to be well described with Y-ansatz within the 1%-level
deviation. From the comparison with the Q- potential, we find the
universality of the string tension as and the one-gluon-exchange result as . The excited-state potential is also studied in
lattice QCD with at for 24 patterns of the 3Q
systems.The energy gap between and , which physically means the gluonic excitation energy, is found to be
about 1GeV in the typical hadronic scale, which is relatively large compared
with the excitation energy of the quark origin. This large gluonic excitation
energy justifies the great success of the simple quark model.Comment: Talk given at 16th International Conference on Particles and Nuclei
(PANIC 02), Osaka, Japan, 30 Sep - 4 Oct 200
Low temperature metallic state induced by electrostatic carrier doping of SrTiO
Transport properties of SrTiO-channel field-effect transistors with
parylene organic gate insulator have been investigated. By applying gate
voltage, the sheet resistance falls below 10 k at low
temperatures, with carrier mobility exceeding 1000 cm/Vs. The temperature
dependence of the sheet resistance taken under constant gate voltage exhibits
metallic behavior (/ 0). Our results demonstrate an insulator to
metal transition in SrTiO driven by electrostatic carrier density control.Comment: 3 pages, 4 figure
Checking the transverse Ward-Takahashi relation at one loop order in 4-dimensions
Some time ago Takahashi derived so called {\it transverse} relations relating
Green's functions of different orders to complement the well-known
Ward-Green-Takahashi identities of gauge theories by considering wedge rather
than inner products. These transverse relations have the potential to determine
the full fermion-boson vertex in terms of the renormalization functions of the
fermion propagator. He & Yu have given an indicative proof at one-loop level in
4-dimensions. However, their construct involves the 4th rank Levi-Civita tensor
defined only unambiguously in 4-dimensions exactly where the loop integrals
diverge. Consequently, here we explicitly check the proposed transverse
Ward-Takahashi relation holds at one loop order in -dimensions, with
.Comment: 20 pages, 3 figures This version corrects and clarifies the previous
result. This version has been submitted for publicatio
- …