253,361 research outputs found

    Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response

    Full text link
    The cosmic strings(CSs) may be one important source of gravitational waves(GWs), and it has been intensively studied due to its special properties such as the cylindrical symmetry. The CSs would generate not only usual continuous GW, but also impulsive GW that brings more concentrated energy and consists of different GW components broadly covering low-, intermediate- and high-frequency bands simultaneously. These features might underlie interesting electromagnetic(EM) response to these GWs generated by the CSs. In this paper, with novel results and effects, we firstly calculate the analytical solutions of perturbed EM fields caused by interaction between impulsive cylindrical GWs (would be one of possible forms emitted from CSs) and background celestial high magnetic fields or widespread cosmological background magnetic fields, by using rigorous Einstein - Rosen metric. Results show: perturbed EM fields are also in the impulsive form accordant to the GW pulse, and asymptotic behaviors of the perturbed EM fields are fully consistent with the asymptotic behaviors of the energy density, energy flux density and Riemann curvature tensor of corresponding impulsive cylindrical GWs. The analytical solutions naturally give rise to the accumulation effect which is proportional to the term of distance^1/2, and based on it, we for the first time predict potentially observable effects in region of the Earth caused by the EM response to GWs from the CSs.Comment: 34 pages, 12 figure

    Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions

    Get PDF
    Within a relativistic transport (ART) model for heavy-ion collisions, we show that the recently observed characteristic change from out-of-plane to in-plane elliptic flow of protons in mid-central Au+Au collisions as the incident energy increases is consistent with the calculated results using a stiff nuclear equation of state (K=380 MeV). We have also studied the elliptic flow of pions and the transverse momentum dependence of both the nucleon and pion elliptic flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure

    A blowout jet associated with one obvious extreme-ultraviolet wave and one complicated coronal mass ejection event

    Full text link
    In this paper, we present a detailed analysis of a coronal blowout jet eruption which was associated with an obvious extreme-ultraviolet (EUV) wave and one complicated coronal mass ejection (CME) event based on the multi-wavelength and multi-view-angle observations from {\sl Solar Dynamics Observatory} and {\sl Solar Terrestrial Relations Observatory}. It is found that the triggering of the blowout jet was due to the emergence and cancellation of magnetic fluxes on the photosphere. During the rising stage of the jet, the EUV wave appeared just ahead of the jet top, lasting about 4 minutes and at a speed of 458 - \speed{762}. In addition, obvious dark material is observed along the EUV jet body, which confirms the observation of a mini-filament eruption at the jet base in the chromosphere. Interestingly, two distinct but overlapped CME structures can be observed in corona together with the eruption of the blowout jet. One is in narrow jet-shape, while the other one is in bubble-shape. The jet-shaped component was unambiguously related with the outwardly running jet itself, while the bubble-like one might either be produced due to the reconstruction of the high coronal fields or by the internal reconnection during the mini-filament ejection according to the double-CME blowout jet model firstly proposed by Shen et al. (2012b), suggesting more observational evidence should be supplied to clear the current ambiguity based on large samples of blowout jets in future studies.Comment: APJ, Accepted October 19, 201

    Uranium on uranium collisions at relativistic energies

    Get PDF
    Deformation and orientation effects on compression, elliptic flow and particle production in uranium on uranium collisions (UU) at relativistic energies are studied within the transport model ART. The density compression in tip-tip UU collisions is found to be about 30% higher and lasts approximately 50% longer than in body-body or spherical UU reactions. The body-body UU collisions have the unique feature that the nucleon elliptic flow is the highest in the most central collisions and remain a constant throughout the reaction. We point out that the tip-tip UU collisions are more probable to create the QGP at AGS and SPS energies while the body-body UU collisions are more useful for studying properties of the QGP at higher energies.Comment: 8 pages + 4 figure

    Multiparty Quantum Secret Report

    Full text link
    A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her MM agents first share a sequence of (MM+1)-particle Greenberger--Horne--Zeilinger (GHZ) states that only Alice knows which state each (MM+1)-particle quantum system is in. Each agent exploits a controlled-not (CNot) gate to encrypt the travelling particle by using the particle in the GHZ state as the control qubit. The boss Alice decrypts the travelling particle with a CNot gate after performing a σx\sigma_x operation on her particle in the GHZ state or not. After the GHZ states (the quantum key) are used up, the parties check whether there is a vicious eavesdropper, say Eve, monitoring the quantum line, by picking out some samples from the GHZ states shared and measure them with two measuring bases. After confirming the security of the quantum key, they use the GHZ states remained repeatedly for next round of quantum communication. This scheme has the advantage of high intrinsic efficiency for qubits and the total efficiency.Comment: 4 pages, no figure

    Reionization Histories of Milky Way Mass Halos

    Full text link
    We investigate the connection between the epoch of reionization and the present day universe, by examining the extended mass reionization histories of dark matter halos identified at z=0. We combine an N-body dark matter simulation of a 600 Mpc volume with a three-dimensional, seminumerical reionization model. This provides reionization redshifts for each particle, which can then be connected with the properties of their halos at the present time. We find that the vast majority of present-day halos with masses larger than ~ few x 10^11 Msun reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogenous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ~ 115 Myr for 10^(12 \pm 0.25) Msun halos, decreasing slightly to ~ 95 Myr for 10^(15 \pm 0.25) Msun halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ~ 20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large HII regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.Comment: 11 pages, 10 figures, 1 table. Submitted to Ap

    Current status of food waste generation and management in China

    Get PDF
    The current status of FW generation, including its characteristics, management, and current challenges in China, were analyzed, and further suggestions were made with regards to improvement. About 19.50% of the FW generated could be treated under the current designs for treatment capacity in China. FW characteristics show great variability in different economic regions in China, where both treatment efficiency and FW management are poor. Combined pretreatment and three-phase separation is the most used pretreatment method, and of the current FW pilot projects, anaerobic digestion is the most prevalent, accounting for 76.1% of all projects. Significant regional characteristics have been identified regarding FW generation and the treatment capacity for FW processing. Possible factors influencing FW management in China were also discussed. Finally, detailed suggestions are given for further development of FW treatment capacity, particularly regarding potential technical routes and management measures
    corecore