42,966 research outputs found
On the nature of the lightest scalar resonances
We briefly review the recent progresses in the new unitarization approach
being developed by us. Especially we discuss the large
scatterings by making use of the partial wave matrix parametrization form.
We find that the pole may move to the negative real axis on the second
sheet of the complex plane, therefore it raises the interesting question
that this `' pole may be related to the in the linear
model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron
Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure
Upper Pseudogap Phase: Magnetic Characterizations
It is proposed that the upper pseudogap phase (UPP) observed in the high-Tc
cuprates correspond to the formation of spin singlet pairing under the bosonic
resonating-valence-bond (RVB) description. We present a series of evidence in
support of such a scenario based on the calculated magnetic properties
including uniform spin susceptibility, spin-lattice and spin-echo relaxation
rates, which consistently show that strong spin correlations start to develop
upon entering the UPP, being enhanced around the momentum (\pi, \pi) while
suppressed around (0, 0). The phase diagram in the parameter space of doping
concentration, temperature, and external magnetic field, is obtained based on
the the bosonic RVB theory. In particular, the competition between the Zeeman
splitting and singlet pairing determines a simple relation between the
"critical" magnetic field, H_{PG}, and characteristic temperature scale, T0, of
the UPP. We also discuss the magnetic behavior in the lower pseudogap phase at
a temperature Tv lower than T0, which is characterized by the formation of
Cooper pair amplitude where the low-lying spin fluctuations get suppressed at
both (0, 0) and (\pi, \pi). Properties of the UPP involving charge channels
will be also briefly discussed.Comment: 11 pages, 5 figures, final version to appear in PR
ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells.
BACKGROUND: Many viruses depend on the extensive membranous network of the endoplasmic reticulum (ER) for their translation, replication, and packaging. Certain membrane modifications of the ER can be a trigger for ER stress, as well as the accumulation of viral protein in the ER by viral infection. Then, unfolded protein response (UPR) is activated to alleviate the stress. Zika virus (ZIKV) is a mosquito-borne flavivirus and its infection causes microcephaly in newborns and serious neurological complications in adults. Here, we investigated ER stress and the regulating model of UPR in ZIKV-infected neural cells in vitro and in vivo. METHODS: Mice deficient in type I and II IFN receptors were infected with ZIKV via intraperitoneal injection and the nervous tissues of the mice were assayed at 5 days post-infection. The expression of phospho-IRE1, XBP1, and ATF6 which were the key markers of ER stress were analyzed by immunohistochemistry assay in vivo. Additionally, the nuclear localization of XBP1s and ATF6n were analyzed by immunohistofluorescence. Furthermore, two representative neural cells, neuroblastoma cell line (SK-N-SH) and astrocytoma cell line (CCF-STTG1), were selected to verify the ER stress in vitro. The expression of BIP, phospho-elF2α, phospho-IRE1, and ATF6 were analyzed through western blot and the nuclear localization of XBP1s was performed by confocal immunofluorescence microscopy. RT-qPCR was also used to quantify the mRNA level of the UPR downstream genes in vitro and in vivo. RESULTS: ZIKV infection significantly upregulated the expression of ER stress markers in vitro and in vivo. Phospho-IRE1 and XBP1 expression significantly increased in the cerebellum and mesocephalon, while ATF6 expression significantly increased in the mesocephalon. ATF6n and XBP1s were translocated into the cell nucleus. The levels of BIP, ATF6, phospho-elf2α, and spliced xbp1 also significantly increased in vitro. Furthermore, the downstream genes of UPR were detected to investigate the regulating model of the UPR during ZIKV infection in vitro and in vivo. The transcriptional levels of atf4, gadd34, chop, and edem-1 in vivo and that of gadd34 and chop in vitro significantly increased. CONCLUSION: Findings in this study demonstrated that ZIKV infection activates ER stress in neural cells. The results offer clues to further study the mechanism of neuropathogenesis caused by ZIKV infection
Is the meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond
O(N) linear model is solvable in the large limit and hence
provides a useful theoretical laboratory to test various unitarization
approximations. We find that the large limit and the
limit do not commute. In order to get the correct large spectrum one has
to firstly take the large limit. We argue that the meson may
not be described as generated dynamically. On the contrary, it is most
appropriately described at the same level as the pions, i.e, both appear
explicitly in the effective lagrangian. Actually it is very likely the
meson responsible for the spontaneous chiral symmetry breaking in a lagrangian
with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified;
revised version accepted by IJMP
Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout
The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218
associated with supernova SN 2006aj may imply an interesting astronomical
picture where a supernova shock breakout locates behind a relativistic GRB jet.
Based on this picture, we study neutrino emission for early afterglows of GRB
060218-like GRBs, where neutrinos are expected to be produced from photopion
interactions in a GRB blast wave that propagates into a dense wind.
Relativistic protons for the interactions are accelerated by an external shock,
while target photons are basically provided by the incoming thermal emission
from the shock breakout and its inverse-Compton scattered component. Because of
a high estimated event rate of low-luminosity GRBs, we would have more
opportunities to detect afterglow neutrinos from a single nearby GRB event of
this type by IceCube. Such a possible detection could provide evidence for the
picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA
- …