6,629 research outputs found
Fracture strain of LPCVD polysilicon
A polysilicon bridge-slider structure in which one end of the bridge is fixed and the other is connected to a plate sliding in two flanged guideways, is designed and fabricated to study the strain at fracture of LPCVD polysilicon. In the experiments, a mechanical probe is used to push against the plate end, compressing and forcing the bridge to buckle until it breaks. The distance that the plate needs to be pushed to break the bridge is recorded. Nonlinear beam theory is then used to interpret the results of these axially-loaded-bridge experiments. The measured average fracture strain of as-deposited LPCVD polysilicon is 1.72%. High-temperature annealing of the bridge-sliders at 1000°C for 1 h decreases the average fracture strain to 0.93%
MEMS flow sensors for nano-fluidic applications
This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heater’s temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended from the substrate to improve thermal isolation. The sensors have demonstrated a flow rate resolution below 10 nL/min, as well as the capability for detecting micro bubbles in the liquid. Heat transfer simulation has also been performed to explain the sensor operation and yielded good agreement with experimental data
A MEMS electrostatic particle transportation system
We demonstrate here an electrostatic MEMS system
capable of transporting particles 5-10ÎĽm in diameter in
air. This system consists of 3-phase electrode arrays
covered by insulators (Figs. 1, 2). Extensive testing of
this system has been done using a variety of insulation
materials (silicon nitride, photoresist, and Teflon),
thickness (0- 12ÎĽm), particle sizes (1-10ÎĽm), particle
materials (metal, glass, polystyrene, spores, etc),
waveforms, frequencies, and voltages. Although
previous literature [1-2] claimed it impractical to
electrostatically transport particles with sizes 5-10ÎĽm
due to complex surface forces, this effort actually
shows it feasible (as high as 90% efficiency) with the
optimal combination of insulation thickness, electrode
geometry, and insulation material. Moreover, we suggest a qualitative theory for our particle transportation system which is consistent with our data and finite-element electrostatic simulations
A micro cell lysis device
A new micromachined cell lysis device is developed. It is designed for miniature bio-analysis systems where cell lysing is needed to obtain intracellular materials for further analysis such as DNA identification. It consists of muti-electrode pairs to apply electric fields to cells. We adopt the means of using electric field lysing because it can greatly simplify purification steps for preparation of biological samples, when compared to conventional chemical methods. Yeast, Chinese cabbage, radish cells and E. coli are tested with the device. The lysis of yeast, Chinese cabbage, radish cells is observed by a microscope. The experimental observation suggests E. coli are also lysed by the pulsed electric field. The range of electric field for the lysis is on the order of 1 kV/cm to 10 kV/cm. In addition, for practical reasons, we reduce the voltage required for lysing to less than 10 V by making the electrode gap on the order of microns
A suspended microchannel with integrated temperature sensors for high-pressure flow studies
A freestanding microchannel, with integrated temperature sensors, has been developed for high-pressure flow studies. These microchannels are approximately 20ÎĽm x 2ÎĽm x 4400ÎĽm, and are suspended above 80 ÎĽm deep cavities, bulk micromachined using BrF3 dry etch. The calibration of the lightly boron-doped thermistor-type sensors shows that the resistance sensitivity of these integrated sensors is parabolic with respect to temperature and linear with respect to pressure. Volumetric flow rates of N2 in the microchannel were measured at inlet pressures up to 578 psig. The discrepancy between the data and theory results from the flow acceleration in a channel, the non-parabolic velocity profile, and the bulging of the channel. Bulging effects were evaluated by using incompressible water flow measurements, which also measures 1.045x10^-3N-s/m^2 for the viscosity of DI water. The temperature data from sensors on the channel shows the heating of the channel due to the friction generated by the high-pressure flow inside
Micro heat exchanger by using MEMS impinging jets
A micro impinging-jet heat exchanger is presented here. Heat transfer is studied for single jet, slot arrays and jet arrays. In order to facilitate micro heat transfer measurements with these devices, a MEMS sensor chip, which has an 8 x 8 temperature-sensor array on one side, and an integrated heater on the other side has been designed and fabricated. This sensor chip allows 2-D surface temperature
measurement with various jets impinging on it. It is
found that micro impinging jets can be highly efficient when compared to existing macro impinging-jet microelectronics packages such as IBM 4381. For example, using a single nozzle jet (500-μm diameter driven by 5 psig pressure), the sensor chip (2 x 2 cm^2) temperature can be cooled down from 70 to 33°C. The cooling becomes more efficient when
nozzle arrays (4x5 over 1 cm^2 area) are used under
the same driving pressure. Interestingly, although
higher driving pressure gives better cooling (lower
surface temperature), the cooling efficiency, defined
as h/0.5pv^2, is actually higher for lower driving
pressure
Explainable deep learning for arm classification during deep brain stimulation - towards digital biomarkers for closed-loop stimulation
Deep brain stimulation (DBS) is an effective technique for treating motor symptoms in neurological conditions like Parkinson’s disease and dystonic and essential tremor (DT and ET). The DBS delivery could be improved if reliable biomarkers could be found. We propose a deep learning (DL) framework based on EEGNet to search for digital biomarkers in EEG recordings for discriminating neural response from changes in DBS parameters. Here we present a proof-of-concept by distinguishing left and right arm movement in raw EEG recorded during a DBS programming session of a DT patient. Based on the classification of 1s segments from six-channel EEG, we achieve an average accuracy of up to 93.8%. In addition, we propose a simple, yet effective model-agnostic filtering strategy for explaining the network’s performance, showing which frequency band features it mostly uses to classify the EEG
Is the Convergence of Accounting Standards Good for Stock Markets?
This paper examines the impact of the convergence of Hong Kong Accounting Standard 40 (HKAS 40) with the International Financial Reporting Standard (IFRS) on the stock prices of firms in the property industry. Using a sample of 22111 firm-day observations, we show that the new standard has a negative impact on the stock performance of these firms.Hong Kong Accounting Standard 40, Event Window, Stock Return.
Parylene Accelerometer Utilizing Spiral Beams
This paper reports a Parylene accelerometer utilizing spiral beams. Since Parylene has intrinsic tensile stress, the resonant frequency ω_n of sensor structure is higher than that under no tensile stress. Considering the sensitivity of accelerometer is 1/ω_n^2 , the investigation of ω_n of a suspended structure supported by straight beams is carried out both theoretically and experimentally. As a result, it is proved that comparatively long beams are necessary for realizing the high sensitivity of a Parylene sensor with tensile stress. A spiral beam is effective for not only realizing a long beam in a limited space, but also realizing stress relaxation. Both Parylene accelerometer with straight beams and that with spiral beams are fabricated. Sensitivity of them is characterized, and the effectiveness of utilizing spiral beam is confirmed
- …