14,477 research outputs found

    Disclination in Lorentz Space-Time

    Get PDF
    The disclination in Lorentz space-time is studied in detail by means of topological properties of ϕ\phi -mapping. It is found the space-time disclination can be described in term of a Dirac spinor. The size of the disclination, which is proved to be the difference of two sets of su(2)% -like monopoles expressed by two mixed spinors, is quantized topologically in terms of topological invariants−-winding number. The projection of space-time disclination density along an antisymmetric tensor field is characterized by Brouwer degree and Hopf index.Comment: Revtex, 7 page

    Generally Covariant Conservative Energy-Momentum for Gravitational Anyons

    Get PDF
    We obtain a generally covariant conservation law of energy-momentum for gravitational anyons by the general displacement transform. The energy-momentum currents have also superpotentials and are therefore identically conserved. It is shown that for Deser's solution and Clement's solution, the energy vanishes. The reasonableness of the definition of energy-momentum may be confirmed by the solution for pure Einstein gravity which is a limit of vanishing Chern-Simons coulping of gravitational anyons.Comment: 12 pages, Latex, no figure

    Anharmonicity Induced Resonances for Ultracold Atoms and their Detection

    Full text link
    When two atoms interact in the presence of an anharmonic potential, such as an optical lattice, the center of mass motion cannot be separated from the relative motion. In addition to generating a confinement-induced resonance (or shifting the position of an existing Feshbach resonance), the external potential changes the resonance picture qualitatively by introducing new resonances where molecular excited center of mass states cross the scattering threshold. We demonstrate the existence of these resonances, give their quantitative characterization in an optical superlattice, and propose an experimental scheme to detect them through controlled sweeping of the magnetic field.Comment: 6 pages, 5 figures; expanded presentatio

    Effective single-band models for strongly interacting fermions in an optical lattice

    Full text link
    To test effective Hamiltonians for strongly interacting fermions in an optical lattice, we numerically find the energy spectrum for two fermions interacting across a Feshbach resonance in a double well potential. From the spectrum, we determine the range of detunings for which the system can be described by an effective lattice model, and how the model parameters are related to the experimental parameters. We find that for a range of strong interactions the system is well described by an effective t−Jt-J model, and the effective superexchange term, JJ, can be smoothly tuned through zero on either side of unitarity. Right at and around unitarity, an effective one-band general Hubbard model is appropriate, with a finite and small on-site energy, due to a lattice-induced anharmonic coupling between atoms at the scattering threshold and a weakly bound Feshbach molecule in an excited center of mass state.Comment: 7 pages, 7 figures; minor typos correcte

    Optimal time decay of the non cut-off Boltzmann equation in the whole space

    Full text link
    In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space \threed_x with \DgE. We use the existence theory of global in time nearby Maxwellian solutions from \cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption \cite{MR677262,MR2847536}. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the L^2_\vel(L^r_x)-norm for any 2≀r≀∞2\leq r\leq \infty.Comment: 31 pages, final version to appear in KR
    • 

    corecore