31,578 research outputs found

    Normalizing Weak Boson Pair Production at the Large Hadron Collider

    Get PDF
    The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of SM backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross-sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.Comment: 11 pages; added references, minor text revisions, version to appear in Phys. Rev.

    The coexistence of superconductivity and ferromagnetism in nano-scale metallic grains

    Full text link
    A nano-scale metallic grain in which the single-particle dynamics are chaotic is described by the so-called universal Hamiltonian. This Hamiltonian includes a superconducting pairing term and a ferromagnetic exchange term that compete with each other: pairing correlations favor minimal ground-state spin, while the exchange interaction favors maximal spin polarization. Of particular interest is the fluctuation-dominated regime where the bulk pairing gap is comparable to or smaller than the single-particle mean level spacing and the Bardeen-Cooper-Schrieffer theory of superconductivity breaks down. Superconductivity and ferromagnetism can coexist in this regime. We identify signatures of the competition between superconductivity and ferromagnetism in a number of quantities: ground-state spin, conductance fluctuations when the grain is weakly coupled to external leads and the thermodynamic properties of the grain, such as heat capacity and spin susceptibility.Comment: 13 pages, 13 figures, Proceedings of the Conference on the Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT11

    Comparison of Powertrain System Configurations for Electric Passenger Vehicles

    Full text link
    Copyright © 2015 SAE International. Electric vehicles (EV) are considered a practical alternative to conventional and hybrid electric passenger vehicles, with higher overall powertrain efficiencies by omitting the internal combustion engine. As a consequence of lower energy density in the battery energy storage as compared to fossil fuels powered vehicles, EVs have limited driving range, leading to a range phobia and limited consumer acceptance. Particularly for larger luxury EVs, electric motors with a single reduction gear typically do not achieve the diverse range of function needs that are present in multi-speed conventional vehicles, most notably acceleration performance and top speed requirements. Subsequently, multi-speed EV powertrains have been suggested for these applications. Through the utilization of multiple gear ratios a more diverse range of functional needs can be realized without increasing the practical size of the electric motor. The major limitation of multi-speed EV powertrains is that the increased transmission complexity introduces additional losses to the vehicle. Through a number of simulations this paper studies the integration of multispeed transmission with EV platforms. Particularly, it investigates the performance improvements of both B and E class vehicle platforms realized through utilization of two and three speed transmissions. Also the potential application of hybrid energy storage systems (i.e. batteries combined with super-capacitors) is studied. Results demonstrate that there can be significant benefits attained for both small and large passenger vehicles through the application of multi-speed transmissions. However, optimization of these ratios must be considered in the analysis

    Nodeless superconductivity in Ir1−x_{1-x}Ptx_xTe2_2 with strong spin-orbital coupling

    Full text link
    The thermal conductivity κ\kappa of superconductor Ir1−x_{1-x}Ptx_{x}Te2_2 (xx = 0.05) single crystal with strong spin-orbital coupling was measured down to 50 mK. The residual linear term κ0/T\kappa_0/T is negligible in zero magnetic field. In low magnetic field, κ0/T\kappa_0/T shows a slow field dependence. These results demonstrate that the superconducting gap of Ir1−x_{1-x}Ptx_{x}Te2_2 is nodeless, and the pairing symmetry is likely conventional s-wave, despite the existence of strong spin-orbital coupling and a quantum critical point.Comment: 5 pages, 4 figure

    Accelerated linearized alternating direction method of multipliers with Nesterov extrapolation

    Full text link
    The alternating direction method of multipliers (ADMMs) has found widespread use in solving separable convex optimization problems. In this paper, by employing Nesterov extrapolation technique, we propose two families of accelerated linearized ADMMsfor addressing two-block linearly constrained separable convex optimization problems where each block of the objective function exhibits a `nonsmooth' plus `smooth' composite structure. Our proposed accelerated linearized ADMMs extend two classical Nesterov acceleration methods designed for unconstrained composite optimization problems to linearly constrained problems. These methods are capable of achieving non-ergodic convergence rates of O(1/k^2) provided that one block of the objective function exhibits strong convexity and the gradients of smooth terms are Lipschitz continuous. We show that the proposed methods can reduce to accelerated linearized augmented Lagrangian methods (ALMs) with non-ergodic O(1/k2 ) convergence rates for solving one-block linearly constrained convex optimization problems. Furthermore, we explore hybrid versions of the proposed linearized accelerated ADMMs, which also demonstrate non-ergodic convergence rates of O(1/k2) under the same assumption. We also investigate inexact versions of the proposed methods. Under mild assumptions regarding error sequences, these methods still maintain O(1/k2) non-ergodic convergence rates. By choosing different extrapolation parameters, we explore the relationship between the proposed methods and existing accelerated methods

    Defrost Efficiency Analysis of PMMA Rear Window

    Full text link
    Copyright © 2016 SAE International. As a potential material for lightweight vehicle, polymethyl methacrylate (PMMA) has proven to perform well in optical behavior and weather resistance. However, the application in automotive glazing has seldom been studied. This paper investigates the defrost performance of PMMA rear window using both numerical and experimental methods. The finite element analysis (FEA) results were found to be in good agreement with the experimental data. Based on the validated finite element model, we further optimized the defrost efficiency by changing the arrangement of heating lines. The results demonstrated the frost layer on the vision-related region of PMMA rear window can melt within 30 minutes, which meets the requirement of defrost efficiency

    Dynamics and Control of Clutchless AMTs

    Full text link
    • …
    corecore