10,916 research outputs found
Atomic layer deposition of ZnS nanotubes
We report on growth of high-aspect-ratio () zinc sulfide
nanotubes with variable, precisely tunable, wall thicknesses and tube diameters
into highly ordered pores of anodic alumina templates by atomic layer
deposition (ALD) at temperatures as low as 75 C. Various
characterization techniques are employed to gain information on the
composition, morphology, and crystal structure of the synthesized samples.
Besides practical applications, the ALD-grown tubes could be envisaged as model
systems for the study of a certain class of size-dependent quantum and
classical phenomena.Comment: 1 LaTeX source file, 8 eps figures, and the manuscript in PDF forma
Development of a new machine system for the forming of micro-sheet-products
Most of the developed micro-forming machines were based on standalone concepts which do not support efficient integration to make them fully automated and integrated. At present, material feeding in micro-forming is not of sufficient precision and reliability for high throughput manufacturing applications. Precise feeding is necessary to ensure that micro-parts can be produced with sufficient accuracy, especially in multi-stage forming, while high-speed feeding is a must to meet the production-rate requirements. Therefore, design of a new high-precision and high-speed feeder for micro-forming is proposed. Several possible approaches are examined with a view to establishing feasible concepts. Based on the investigation, several concepts for thin sheet-metal feeding for micro-forming are generated, they being argued and assessed with applicable loads and forces analysis. These form a basis of designing a new feeder
A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorus (P), in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil) excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise. <br><br> This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions
A spinor approach to Walker geometry
A four-dimensional Walker geometry is a four-dimensional manifold M with a
neutral metric g and a parallel distribution of totally null two-planes. This
distribution has a natural characterization as a projective spinor field
subject to a certain constraint. Spinors therefore provide a natural tool for
studying Walker geometry, which we exploit to draw together several themes in
recent explicit studies of Walker geometry and in other work of Dunajski (2002)
and Plebanski (1975) in which Walker geometry is implicit. In addition to
studying local Walker geometry, we address a global question raised by the use
of spinors.Comment: 41 pages. Typos which persisted into published version corrected,
notably at (2.15
Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates
We show that the quantum fluctuations associated with the Bogoliubov
quasiparticle vacuum can be strongly concentrated inside dark solitons in a
trapped Bose Einstein condensate. We identify a finite number of anomalous
modes that are responsible for such quantum phenomena. The fluctuations in
these anomalous modes correspond to the `zero-point' oscillations in coupled
dark solitons.Comment: 4 pages, 3 figure
Using Positive Youth Development Constructs to Design a Money Management Curriculum for Junior Secondary School Students in Hong Kong
This paper aims to discuss the relationships between the selected positive youth development constructs and the enhancement of Hong Kong junior secondary school students' money management skills, values, and attitudes. Various issues of money management of adolescents are reviewed. These issues include the need for money management programs for adolescents, the content and coverage of an appropriate money management program, and its relationships with the selected positive youth development constructs. The curriculum units for secondary 3 students are taken as examples to illustrate the design of the program. It is believed that promoting cognitive competence, self-efficacy, and spirituality could be an effective way to enhance students' money management skills, values, and attitudes, thus preparing them better for facing the finance-related issues in life
Using Positive Youth Development Constructs to Design a Drug Education Curriculum for Junior Secondary Students in Hong Kong
This paper outlines the design of a new curriculum for positive youth development (P.A.T.H.S. II) in Hong Kong. The paper discusses the conceptual base for designing a drug-education curriculum for junior-secondary students using four positive youth development constructs—cognitive competence, emotional competence, beliefs in the future, and self-efficacy. The program design is premised on the belief that adolescents do have developmental assets; therefore, the curriculum is designed to develop their psychosocial competencies. The goal of the curriculum is to develop the selfhood of these youths and ultimately achieve the goal of successful adolescent development
Perceived Effectiveness and Satisfaction of a Community-Based Positive Youth Development Program: Findings Based on High School Students
This study examined participants’ perceptions of a community-based positive youth development (PYD) program (the Project P.A.T.H.S.) based on the responses of 16,420 junior secondary students who joined the program in 2015. Subjective outcome evaluation approach was adopted to examine the students’ views of program content, program instructors, and program effectiveness. Consistent with previous studies, results showed that students generally perceived the program positively, and positive relationships were found amongst the three domains of evaluation. Multiple regression analyses showed that perceived program content and instructor qualities were significant predictors and could explain 35% of the variance in program effectiveness perceived by the participants. The present findings are basically consistent with previous subjective outcome evaluation findings derived from the school-based and community-based programs of the Project P.A.T.H.S. in Hong Kong
Effect of Temperature on N2O and NO Emission in a Partial Nitrification SBR Treating Reject Wastewater
Temperature is a very important parameter during nitritation, having a direct effect on ammonia oxidation rate (AOR) and enzymatic activities which relate to both N2O and NO emission. This study aims at investigating the effect of temperature on AOR, N2O and NO production in an enriched ammonia oxidizing bacteria (AOB) sequencing batch reactor (SBR) performing partial
nitrification (PN) of synthetic reject wastewater. To achieve that, a SBR was subject to several shifts in temperature (in the range of 30 to 15 \ub0C, 5 \ub0C for each decrease). Cycle studies, which contain two aeration phases, were conducted under each temperature. The results showed that AOR specific exponentially correlates with the temperature during the temperature decreasing
experiments. With the decrease of the temperature, N2O firstly increased and then dropped to very low levels along with the decrease of the AOR, unlike NO that did not show any apparent connection with the temperature
Exact Eigenstates and Magnetic Response of Spin-1 and Spin-2 Vectorial Bose-Einstein Condensates
The exact eigenspectra and eigenstates of spin-1 and spin-2 vectorial
Bose-Einstein condensates (BECs) are found, and their response to a weak
magnetic field is studied and compared with their mean-field counterparts.
Whereas mean-field theory predicts the vanishing population of the zero
magnetic-quantum-number component of a spin-1 antiferromagnetic BEC, the
component is found to become populated as the magnetic field decreases. The
spin-2 BEC exhibits an even richer magnetic response due to quantum correlation
between 3 bosons.Comment: 5 pages, no figures. LaTeX20
- …