14,275 research outputs found
Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake
The massive tsunami generated by the 11 March 2011 Tohoku earthquake (M_w 9.0) was widely recorded by GPS buoys, wave gauges, and ocean bottom pressure sensors around the source. Numerous inversions for finite-fault slip time histories have been performed using seismic and/or geodetic observations, yielding generally consistent patterns of large co-seismic slip offshore near the hypocenter and/or up-dip near the trench, where estimated peak slip is ~60 m. Modeling the tsunami generation and near-field wave processes using two detailed rupture models obtained from either teleseismic P waves or high-rate GPS recordings in Japan allows evaluation of how well the finite-fault models account for the regional tsunami data. By determining sensitivity of the tsunami calculations to rupture model features, we determine model modifications that improve the fit to the diverse tsunami data while retaining the fit to the seismic and geodetic observations
Research Program towards Observation of Neutrino-Nucleus Coherent Scattering
The article describes the research program pursued by the TEXONO
Collaboration towards an experiment to observe coherent scattering between
neutrinos and the nucleus at the power reactor. The motivations of studying
this process are surveyed. In particular, a threshold of 100-200 eV has been
achieved with an ultra-low-energy germanium detector prototype. This detection
capability at low energy can also be adapted to conduct searches of Cold Dark
Matter in the low-mass region as well as to enhance the sensitivities in the
study of neutrino magnetic moments.Comment: 5 pages, 8 figures ; Proceedings of TAUP-2005 Workshop, Spain, 2005.
Updated on 2006/9/15 for Proceedings of Neutrino-2006 Conference, Santa Fe,
200
Generalized - Model
By parameterizing the t-j model we present a new electron correlation model
with one free parameter for high-temperature superconductivity. This model is
of symmetry. The energy spectrums are shown to be modulated by
the free parameter in the model. The solution and symmetric structures of the
Hilbert space, as well as the Bethe ansatz approach are discussed for special
cases.Comment: 13 page, Latex, to appear in J. Phys.
8-Methyl-5-methylÂene-2-oxotricyclo[5.3.1.13,9]dodecan-endo-8-ol
The title compound, C14H20O2, crystallizes with homochiral chains of molÂecules hydrogen bonded together along the b axis. Adjacent chains in the ab plane contain molÂecules of the same chirality, leading to a chiral segregation of the molÂecules into layers
Tunneling of correlated electrons in ultra high magnetic field
Effects of the electron-electron interaction on tunneling into a metal in
ultra-high magnetic field (ultra-quantum limit) are studied. The range of the
interaction is found to have a decisive effect both on the nature of the
field-induced instability of the ground state and on the properties of the
system at energies above the corresponding gap. For a short-range repulsive
interaction, tunneling is dominated by the renormalization of the coupling
constant, which leads eventually to the charge-density wave instability. For a
long-range interaction, there exists an intermediate energy range in which the
conductance obeys a power-law scaling form, similar to that of a 1D Luttinger
liquid. The exponent is magnetic-field dependent, and more surprisingly, may be
positive or negative, i. e., interactions may either suppress or enhance the
tunneling conductance compared to its non-interacting value. At energies near
the gap, scaling breaks down and tunneling is again dominated by the
instability, which in this case is an (anisotropic) Wigner crystal instability.Comment: 4 pages, 2 .eps figure
Chemical solution deposition of single phase BiFeO3 thin films on transparent substrates
The production of high quality BiFeO3 thin films on cost-effective transparent electrodes for visible light harvesting applications and devices remains a challenge. Here, we report the production of single-phase nanostructured BiFeO3 thin films via chemical solution deposition (CSD) on transparent conductive fluorine doped tin oxide FTO glass substrates. We show that the BiFeO3 is of high purity using a variety of analytical tools and that the as-obtained BiFeO3 thin films have a single grain single domain structure exhibiting ferroelectric switching under poling. The BiFeO3 samples show visible light absorption with a band gap of 2.7 eV under all processing conditions. By changing the annealing atmosphere it was possible to modify the photocurrent produced, which were (at 1.23 VNHE) 0.07 mA/cm2 (O2-annealed), 0.02 mA/cm2 (air-annealed) and 0.01 mA/cm2 (Ar-annealed). This indicates a change in the mobile carriers available. Our results show that it is possible to produce single phase BiFeO3 on a transparent conductive electrode system with controllable photoconductivity
Challenges and barriers for first-year home and international students in Higher Education in the UK and Ireland: A scoping review
The challenges and barriers that occur when transitioning to university are widely acknowledged within the Higher Education (HE) sector (Thompson et al., 2021). Previous literature has focused extensively on the importance of breaking down barriers and cultivating a sense of belonging in order to generate student success (Daniels & McNeela, 2021; Thompson et al., 2021). There is also considerable research and literature surrounding the challenges and barriers that international students face (Gbadamosi, 2018). However, the direct comparisons between the challenges and barriers faced by home students and international students are less prominently researched. This scoping review aims to fill this gap by gathering literature on this topic and highlighting the similarities and differences between the challenges and barriers home and international students encounter
- âŠ