11,499 research outputs found

    Testing a new luminosity/redshift indicator for γ\gamma-ray bursts

    Full text link
    We have tested a relative spectral lag (RSL) method suggested earlier as a luminosity/redshift (or distance) estimator, using the generalized method by Schaefer & Collazzi. We find the derivations from the luminosity/redshift-RSL (L/R-RSL) relation are comparable with the corresponding observations. Applying the luminosity-RSL relation to two different GRB samples, we find that there exist no violators from the generalized test, namely the Nakar & Piran test and Li test. We also find that about 36 per cent of Schaefer's sample are outliers for the L/R-RSL relation within 1σ\sigma confidence level, but no violators at 3σ\sigma level within the current precision of L/R-RSL relation. An analysis of several potential outliers for other luminosity relations shows they can match the L/R-RSL relation well within an acceptable uncertainty. All the coincident results seem to suggest that this relation could be a potential tool for cosmological study.Comment: 7 pages, 6 figures and 1 table; Comments are welcom

    Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance

    Full text link
    The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave Feshbach resonance is studied theoretically. The pairing symmetry of the ground state is determined by the strength of the atom-atom magnetic dipole interaction. It is kzk_z for a strong dipole interaction; while it becomes kz−iβkyk_z - i \beta k_y, up to a rotation about z, for a weak one (Here β\beta < 1 is a numerical coefficient). By changing the external magnetic field or the atomic gas density, a phase transition between these two states can be driven. We discuss how the pairing symmetry of the ground state can be determined in the time-of-flight experiments.Comment: 12 pages, 7 figure

    Hiding Single Photons With Spread Spectrum Technology

    Full text link
    We describe a proof-of-principal experiment demonstrating the use of spread spectrum technology at the single photon level. We show how single photons with a prescribed temporal shape, in the presence of interfering noise, may be hidden and recovered.Comment: 4 pages, 5 figures

    Higgs Sector in Extensions of the MSSM

    Get PDF
    Extensions of the Minimal Supersymmetric Standard Model (MSSM) with additional singlet scalar fields solve the important mu-parameter fine tuning problem of the MSSM. We compute and compare the neutral Higgs boson mass spectra, including one-loop corrections, of the following MSSM extensions: Next-to-Minimal Supersymmetric Standard Model (NMSSM), the nearly-Minimal Supersymmetric Standard Model (nMSSM), and the U(1)'-extended Minimal Supersymmetric Standard Model (UMSSM) by performing scans over model parameters. We find that the Secluded U(1)'-extended Minimal Supersymmetric Standard Model (sMSSM) is identical to the nMSSM if three of the additional scalars decouple. The dominant part of the one-loop corrections are model-independent since the singlet field does not couple to MSSM particles other than the Higgs doublets. Thus, model-dependent parameters enter the masses only at tree-level. We apply constraints from LEP bounds on the Standard Model and MSSM Higgs boson masses and the MSSM chargino mass, the invisible Z decay width, and the Z-Z' mixing angle. Some extended models permit a Higgs boson with mass substantially below the SM LEP limit or above theoretical limits in the MSSM. Ways to differentiate the models via masses, couplings, decays and production of the Higgs bosons are discussed.Comment: 65 pages, 15 figures. Figure replaced and typos corrected. Version to appear in Phys. Rev.
    • …
    corecore