44,819 research outputs found

    Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection

    Full text link
    We attempt to understand the white-light flare (WLF) that was observed on 2012 March 9 with a newly constructed multi-wavelength solar telescope called the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We also studied the magnetic configuration of the flare via the nonlinear force-free field (NLFFF) extrapolation and the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600 angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%, respectively. The continuum emission enhancement closely coincided with the impulsive increase in the hard X-ray emission and a microwave type III burst at 03:40 UT. We find that the WLF appeared at one end of either the sheared or twisted field lines or both. There was also a long-lasting phase in the H-alpha and soft X-ray bands after the white-light emission peak. In particular, a second, yet stronger, peak appeared at 03:56 UT in the microwave band. This event shows clear evidence that the white-light emission was caused by energetic particles bombarding the lower solar atmosphere. A two-step magnetic reconnection scenario is proposed to explain the entire process of flare evolution, i.e., the first-step magnetic reconnection between the field lines that are highly sheared or twisted or both, and the second-step one in the current sheet, which is stretched by the erupting flux rope. The WLF is supposed to be triggered in the first-step magnetic reconnection at a relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette

    Thermodynamic properties and shear viscosity over entropy density ratio of nuclear fireball in a quantum-molecular dynamics model

    Full text link
    Thermodynamic and transport properties of nuclear fireball created in the central region of heavy-ion collisions below 400 MeV/nucleon are investigated within the isospin-dependent quantum molecular dynamic (IQMD) model. These properties including the density, temperature, chemical potential, entropy density (ss) and shear viscosity (η\eta), are calculated by a generalized hot Thomas Fermi formulism and a parameterized function, which was developed by Danielewicz. As the collision goes on, a transient minimal η/s=5/4π10/4π\eta/s=5/4\pi-10/4\pi occurs in the largest compression stage. Besides, the relationship of η/s\eta/s to temperature (TT) in the freeze-out stage displays a local minimum which is about 9-20 times 1/4π1/4\pi around TT = 8-12 MeV, which can be argued as indicative of a liquid gas phase transition. In addition, the influences of nucleon-nucleon (NN) cross section (σNN\sigma_{NN}) and symmetry energy coefficient (CsC_{s}) are also discussed, and it is found that the results are sensitive to σNN\sigma_{NN} but not to CsC_{s}.Comment: 10 pages, 13 figures; Phys. Rev. C (in press) (x-axis of Fig.1 is corrected

    Influence of statistical sequential decay on isoscaling and symmetry energy coefficient in a GEMINI simulation

    Full text link
    Extensive calculations on isoscaling behavior with the sequential-decay model gemini are performed for the medium-to-heavy nuclei in the mass range A = 60-120 at excitation energies up to 3 MeV/nucleon. The comparison between the products after the first-step decay and the ones after the entire-steps decay demonstrates that there exists a strong sequential decay effect on the final isoscaling parameters and the apparent temperature. Results show that the apparent symmetry energy coefficient γapp\gamma_{app} does not reflect the initial symmetry energy coefficient CsymC_{sym} embedded in the mass calculation in the present GEMINI model.Comment: 4 pages, 3 figures, 1 tabl
    corecore