44,819 research outputs found
Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection
We attempt to understand the white-light flare (WLF) that was observed on
2012 March 9 with a newly constructed multi-wavelength solar telescope called
the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF
observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We
also studied the magnetic configuration of the flare via the nonlinear
force-free field (NLFFF) extrapolation and the vector magnetic field observed
by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics
Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600
angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%,
respectively. The continuum emission enhancement closely coincided with the
impulsive increase in the hard X-ray emission and a microwave type III burst at
03:40 UT. We find that the WLF appeared at one end of either the sheared or
twisted field lines or both. There was also a long-lasting phase in the H-alpha
and soft X-ray bands after the white-light emission peak. In particular, a
second, yet stronger, peak appeared at 03:56 UT in the microwave band. This
event shows clear evidence that the white-light emission was caused by
energetic particles bombarding the lower solar atmosphere. A two-step magnetic
reconnection scenario is proposed to explain the entire process of flare
evolution, i.e., the first-step magnetic reconnection between the field lines
that are highly sheared or twisted or both, and the second-step one in the
current sheet, which is stretched by the erupting flux rope. The WLF is
supposed to be triggered in the first-step magnetic reconnection at a
relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette
Thermodynamic properties and shear viscosity over entropy density ratio of nuclear fireball in a quantum-molecular dynamics model
Thermodynamic and transport properties of nuclear fireball created in the
central region of heavy-ion collisions below 400 MeV/nucleon are investigated
within the isospin-dependent quantum molecular dynamic (IQMD) model. These
properties including the density, temperature, chemical potential, entropy
density () and shear viscosity (), are calculated by a generalized hot
Thomas Fermi formulism and a parameterized function, which was developed by
Danielewicz. As the collision goes on, a transient minimal
occurs in the largest compression stage. Besides, the
relationship of to temperature () in the freeze-out stage displays
a local minimum which is about 9-20 times around = 8-12 MeV, which
can be argued as indicative of a liquid gas phase transition. In addition, the
influences of nucleon-nucleon (NN) cross section () and symmetry
energy coefficient () are also discussed, and it is found that the
results are sensitive to but not to .Comment: 10 pages, 13 figures; Phys. Rev. C (in press) (x-axis of Fig.1 is
corrected
Influence of statistical sequential decay on isoscaling and symmetry energy coefficient in a GEMINI simulation
Extensive calculations on isoscaling behavior with the sequential-decay model
gemini are performed for the medium-to-heavy nuclei in the mass range A =
60-120 at excitation energies up to 3 MeV/nucleon. The comparison between the
products after the first-step decay and the ones after the entire-steps decay
demonstrates that there exists a strong sequential decay effect on the final
isoscaling parameters and the apparent temperature. Results show that the
apparent symmetry energy coefficient does not reflect the
initial symmetry energy coefficient embedded in the mass calculation
in the present GEMINI model.Comment: 4 pages, 3 figures, 1 tabl
- …
