8,282 research outputs found

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching \sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    Superluminal Propagation and Acausality of Nonlinear Massive Gravity

    Get PDF
    Massive gravity is an old idea: trading geometry for mass. Much effort has been expended on establishing a healthy model, culminating in the current ghost-free version. We summarize here our recent findings -- that it is still untenable -- because it is locally acausal: CTC solutions can be constructed in a small neighborhood of any event.Comment: Contribution to Conference in Honour of the 90th Birthday of Freeman Dyson -- To Appear in Proceeding. v2: Explicit CTC example, and other improvements, adde

    A hidden constant in the anomalous Hall effect of a high-purity magnet MnSi

    Full text link
    Measurements of the Hall conductivity in MnSi can provide incisive tests of theories of the anomalous Hall (AH) effect, because both the mean-free-path and magnetoresistance (MR) are unusually large for a ferromagnet. The large MR provides an accurate way to separate the AH conductivity σxyA\sigma_{xy}^A from the ordinary Hall conductivity σxyN\sigma_{xy}^N. Below the Curie temperature TCT_C, σxyA\sigma_{xy}^A is linearly proportional to M M (magnetization) with a proportionality constant SHS_H that is independent of both TT and HH. In particular, SHS_H remains a constant while σxyN\sigma_{xy}^N changes by a factor of 100 between 5 K and TCT_C. We discuss implications of the hidden constancy in SHS_H.Comment: 5 pages, 4 figures. Minor change

    The Lorenz number in CeCoIn5_5 inferred from the thermal and charge Hall currents

    Full text link
    The thermal Hall conductivity κxy\kappa_{xy} and Hall conductivity σxy\sigma_{xy} in CeCoIn5_5 are used to determine the Lorenz number LH{\cal L}_H at low temperature TT. This enables the separation of the observed thermal conductivity into its electronic and non-electronic parts. We uncover evidence for a charge-neutral, field-dependent thermal conductivity, which we identify with spin excitations. At low TT, these excitations dominate the scattering of charge carriers. We show that suppression of the spin excitations in high fields leads to a steep enhancement of the electron mean-free-path, which leads to an interesting scaling relation between the magnetoresistance, thermal conductivity and σxy\sigma_{xy}.Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
    corecore