361 research outputs found
Willingness to pay for red wines in China
China's rapidly expanding wealthy population has expressed a new desire for imported red wines. Using data collected in China's major red wine consumption region of Beijing, this study analyzes the impact of country of origin, price, wine age, and brand on consumerderived utility and willingness to pay for red wines. Findings from a conditional logit model and a mixed logit model indicate that price remains the key factor in Chinese consumers' red wine choices. For gift purchases, consumers are willing to pay an additional 13-20 above Chinese or US wines. Chinese consumers also strongly favor branded and matured red wines. China's rapid and sustainable economic growth and its stronger integration to the global economy have led to greater disposable income and the expanding consumer demand for luxury beverage of red wines
Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918
The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized
Circadian Consequence of Socio-Sexual Interactions in Fruit Flies Drosophila melanogaster
In fruit flies Drosophila melanogaster, courtship is an elaborate ritual comprising chasing, dancing and singing by males to lure females for mating. Courtship interactions peak in the night and heterosexual couples display enhanced nighttime activity. What we do not know is if such socio-sexual interactions (SSI) leave long-lasting after-effects on circadian clock(s). Here we report the results of our study aimed at examining the after-effects of SSI (as a result of co-habitation of males and females in groups) between males and females on their circadian locomotor activity rhythm. Males undergo reduction in the evening activity peak and lengthening of circadian period, while females show a decrease in overall activity. Such after-effects, at least in males, require functional circadian clocks during SSI as loss-of-function clock mutants and wild type flies interacting under continuous light (LL), do not display them. Interestingly, males with electrically silenced Pigment Dispersing Factor (PDF)-positive ventral lateral (LNv) clock neurons continue to show SSI mediated reduction in evening activity peak, suggesting that the LNv clock neurons are dispensable for SSI mediated after-effects on locomotor activity rhythm. Such after-effects in females may not be clock-dependent because clock manipulated females with prior exposure to males show decrease in overall activity, more or less similar to rhythmic wild type females. The expression of SSI mediated after-effects requires a functional olfactory system in males because males with compromised olfactory ability do not display them. These results suggest that SSI causes male-specific, long-lasting changes in the circadian clocks of Drosophila, which requires the presence of functional clocks and intact olfactory ability in males
The Molecular Clockwork of the Fire Ant Solenopsis invicta
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
Structure and mechanism of human DNA polymerase η
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites
Cerebral embolization associated with parenchymal seeding of the left atrial myxoma : Potential role of interleukin-6 and matrix metalloproteinases
Systemic embolization has been reported in up to 40% of patients with left atrial myxoma, half of them with cerebral involvement. However, development of intracerebral embolization associated with parenchymal seeding of the myxoma emboli is an extremely rare complication, with only 36 histologically diagnosed cases reported in the published literature. We describe a 69-year-old woman who arrived at the emergency service with hemiparesis associated with drug-resistant epilepsy and a medical history of resection of a left atrial myxoma 10 months previously. Cranial computed tomography revealed multiple large lesions of heterogeneous density and cystic components in the occipital lobes and posterior fossa parenchyma. Histopathological analyses after stereotactic biopsy of the occipital lesion revealed infiltrative myxoma cells with benign histological findings and uniform expression of calretinin similar to that of the primary cardiac myxoma. Additional immunohistochemical studies confirmed brain parenchymal seeding of the myxoma cells with strong expression of interleukin-6 (IL-6) and focal expression of matrix metalloproteinases-2 (MMP-2). Here, we discuss the clinicopathological features of intracerebral embolization of left atrial myxomas associated with progressive parenchymal seeding of the tumor emboli and the potential pathogenic role of IL-6 and MMPs.Peer reviewe
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Fibrillization of Human Tau Is Accelerated by Exposure to Lead via Interaction with His-330 and His-362
and its mutants at physiological pH. interaction with His-330 and His-362, with sub-micromolar affinity. in the pathogenesis of Alzheimer disease and provide critical insights into the mechanism of lead toxicity
Development of a Humanized HLA-A2.1/DP4 Transgenic Mouse Model and the Use of This Model to Map HLA-DP4-Restricted Epitopes of HBV Envelope Protein
A new homozygous humanized transgenic mouse strain, HLA-A2.1+/+HLA-DP4+/+ hCD4+/+mCD4−/−IAβ−/−β2m−/− (HLA-A2/DP4), was obtained by crossing the previously characterized HLA-A2+/+β2m−/− (A2) mouse and our previously created HLA-DP4+/+ hCD4+/+mCD4−/−IAβ−/− (DP4) mouse. We confirmed that the transgenes (HLA-A2, HLA-DP4, hCD4) inherited from the parental A2 and DP4 mice are functional in the HLA-A2/DP4 mice. After immunizing HLA-A2/DP4 mice with a hepatitis B DNA vaccine, hepatitis B virus-specific antibodies, HLA-A2-restricted and HLA-DP4-restricted responses were observed to be similar to those in naturally infected humans. Therefore, the present study demonstrated that HLA-A2/DP4 transgenic mice can faithfully mimic human cellular responses. Furthermore, we reported four new HLA-DP4-restricted epitopes derived from HBsAg that were identified in both vaccinated HLA-A2/DP4 mice and HLA-DP4-positive human individuals. The HLA-A2/DP4 mouse model is a promising preclinical animal model carrying alleles present to more than a quarter of the human population. This model should facilitate the identification of novel HLA-A2- and HLA-DP4-restricted epitopes and vaccine development as well as the characterization of HLA-DP4-restricted responses against infection in humans
- …