18,796 research outputs found
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
Recommended from our members
Exploring potential R&D collaboration partners through patent analysis based on bibliographic coupling and latent semantic analysis
The aim of the present research is to provide a new systematic methodology to explore potential R&D collaboration partners using patent information. The potential R&D collaboration partners are visualized as a patent assignee level-map based on technological similarity between patents by using network analysis. The proposed framework utilises two analytic methods to measure technological similarity. The first method, bibliographic coupling analysis, measures technological similarity based on the citation relationship using patent bibliographic information. Second, latent semantic analysis is utilized based on semantic similarity using patent textual information. The fuel cell membrane electrode assembly (MEA) technology field is selected and applied to illustrate the proposed methodology. The proposed approach allows firms, universities, research institutes, governments to identify potential R&D collaborators as a systematic decision-making support tool.This is an Accepted Manuscript of an article published by Taylor & Francis in Technology Analysis and Strategic Management on the 22nd of October 2014, available online: http://wwww.tandfonline.com/10.1080/09537325.2014.971004. This version will be under embargo until the 22nd of April 2016
Dynamic model of fiber bundles
A realistic continuous-time dynamics for fiber bundles is introduced and
studied both analytically and numerically. The equation of motion reproduces
known stationary-state results in the deterministic limit while the system
under non-vanishing stress always breaks down in the presence of noise.
Revealed in particular is the characteristic time evolution that the system
tends to resist the stress for considerable time, followed by sudden complete
rupture. The critical stress beyond which the complete rupture emerges is also
obtained
MACS: Multi-agent COTR system for Defense Contracting
The field of intelligent multi-agent systems has expanded rapidly in the recent past. Multi-agent architectures and systems are being investigated and continue to develop. To date, little has been accomplished in applying multi-agent systems to the defense acquisition domain. This paper describes the design, development, and related considerations of a multi-agent system in the area of procurement and contracting for the defense acquisition community
Comment on "Theory of metal-insulator transitions in gated semiconductors" (B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999))
In a recent Letter, Altshuler and Maslov propose a model which attributes the
anomalous temperature and field dependence of the resistivity of
two-dimensional electron (or hole) systems to the charging and discharging of
traps in the oxide (spacer), rather than to intrinsic behavior of interacting
particles associated with a conductor-insulator transition in two dimensions.
We argue against this model based on existing experimental evidence.Comment: 1 page; submitted to PR
Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order
Angle resolved photoemission (ARPES) data from the electron doped cuprate
superconductor SmCeCuO shows a much stronger pseudo-gap
or "hot-spot" effect than that observed in other optimally doped -type
cuprates. Importantly, these effects are strong enough to drive the
zone-diagonal states below the chemical potential, implying that d-wave
superconductivity in this compound would be of a novel "nodeless" gap variety.
The gross features of the Fermi surface topology and low energy electronic
structure are found to be well described by reconstruction of bands by a
order. Comparison of the ARPES and optical data from
the sample shows that the pseudo-gap energy observed in optical data is
consistent with the inter-band transition energy of the model, allowing us to
have a unified picture of pseudo-gap effects. However, the high energy
electronic structure is found to be inconsistent with such a scenario. We show
that a number of these model inconsistencies can be resolved by considering a
short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure
Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films
A long standing problem of domain switching process - how domains nucleate -
is examined in ultrathin ferroelectric films. We demonstrate that the large
depolarization fields in ultrathin films could significantly lower the
nucleation energy barrier (U*) to a level comparable to thermal energy (kBT),
resulting in power-law like polarization decay behaviors. The "Landauer's
paradox": U* is thermally insurmountable is not a critical issue in the
polarization switching of ultrathin ferroelectric films. We empirically find a
universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure
- …