63,363 research outputs found
Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction
Visual media are powerful means of expressing emotions and sentiments. The
constant generation of new content in social networks highlights the need of
automated visual sentiment analysis tools. While Convolutional Neural Networks
(CNNs) have established a new state-of-the-art in several vision problems,
their application to the task of sentiment analysis is mostly unexplored and
there are few studies regarding how to design CNNs for this purpose. In this
work, we study the suitability of fine-tuning a CNN for visual sentiment
prediction as well as explore performance boosting techniques within this deep
learning setting. Finally, we provide a deep-dive analysis into a benchmark,
state-of-the-art network architecture to gain insight about how to design
patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and
Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi
Vortices, circumfluence, symmetry groups and Darboux transformations of the (2+1)-dimensional Euler equation
The Euler equation (EE) is one of the basic equations in many physical fields
such as fluids, plasmas, condensed matter, astrophysics, oceanic and
atmospheric dynamics. A symmetry group theorem of the (2+1)-dimensional EE is
obtained via a simple direct method which is thus utilized to find \em exact
analytical \rm vortex and circumfluence solutions. A weak Darboux
transformation theorem of the (2+1)-dimensional EE can be obtained for \em
arbitrary spectral parameter \rm from the general symmetry group theorem. \rm
Possible applications of the vortex and circumfluence solutions to tropical
cyclones, especially Hurricane Katrina 2005, are demonstrated.Comment: 25 pages, 9 figure
To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model
The entrainment transition of coupled random frequency oscillators presents a
long-standing problem in nonlinear physics. The onset of entrainment in
populations of large but finite size exhibits strong sensitivity to
fluctuations in the oscillator density at the synchronizing frequency. This is
the source for the unusual values assumed by the correlation size exponent
. Locally coupled oscillators on a -dimensional lattice exhibit two
types of frequency entrainment: symmetry-breaking at , and aggregation
of compact synchronized domains in three and four dimensions. Various critical
properties of the transition are well captured by finite-size scaling relations
with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to
Statphys2
Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity
We introduce a system with one or two amplified nonlinear sites ("hot spots",
HSs) embedded into a two-dimensional linear lossy lattice. The system describes
an array of evanescently coupled optical or plasmonic waveguides, with gain
applied at selected HS cores. The subject of the analysis is discrete solitons
pinned to the HSs. The shape of the localized modes is found in
quasi-analytical and numerical forms, using a truncated lattice for the
analytical consideration. Stability eigenvalues are computed numerically, and
the results are supplemented by direct numerical simulations. In the case of
self-focusing nonlinearity, the modes pinned to a single HS are stable or
unstable when the nonlinearity includes the cubic loss or gain, respectively.
If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at
the HS supports stable modes in a small parametric area, while weak cubic loss
gives rise to a bistability of the discrete solitons. Symmetric and
antisymmetric modes pinned to a symmetric set of two HSs are considered too.Comment: Philosophical Transactions of the Royal Society A, in press (a
special issue on "Localized structures in dissipative media"
Mapping Smoking Addiction Using Effective Connectivity Analysis
Prefrontal and parietal cortex, including the default mode network (DMN; medial prefrontal cortex (mPFC), and posterior cingulate cortex, PCC), have been implicated in addiction. Nonetheless, it remains unclear which brain regions play a crucial role in smoking addiction and the relationship among these regions. Since functional connectivity only measures correlations, addiction-related changes in effective connectivity (directed information flow) among these distributed brain regions remain largely unknown. Here we applied spectral dynamic causal modeling (spDCM) to resting state fMRI to characterize changes in effective connectivity among core regions in smoking addiction. Compared to nonsmokers, smokers had reduced effective connectivity from PCC to mPFC and from RIPL to mPFC, a higher self-inhibition within PCC and a reduction in the amplitude of endogenous neuronal fluctuations driving the mPFC. These results indicate that spDCM can differentiate the functional architectures between the two groups, and may provide insight into the brain mechanisms underlying smoking addiction. Our results also suggest that future brain-based prevention and intervention in addiction should consider the amelioration of mPFC-PCC-IPL circuits
Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers
We report on the experimental observation of two types of phase-locked vector
soliton in weakly birefringent cavity erbium-doped fiber lasers. While a
phase-locked dark-dark vector soliton was only observed in fiber lasers of
positive dispersion, a phase-locked dark-bright vector soliton was obtained in
fiber lasers of either positive or negative dispersion. Numerical simulations
confirmed the experimental observations, and further showed that the observed
vector solitons are the two types of phase-locked polarization domain-wall
solitons theoretically predicted.Comment: 14 pages, 4 Figure
DC Spin Current Generation in a Rashba-type Quantum Channel
We propose and demonstrate theoretically that resonant inelastic scattering
(RIS) can play an important role in dc spin current generation. The RIS makes
it possible to generate dc spin current via a simple gate configuration: a
single finger-gate that locates atop and orients transversely to a quantum
channel in the presence of Rashba spin-orbit interaction. The ac biased
finger-gate gives rise to a time-variation in the Rashba coupling parameter,
which causes spin-resolved RIS, and subsequently contributes to the dc spin
current. The spin current depends on both the static and the dynamic parts in
the Rashba coupling parameter, and , respectively, and is
proportional to . The proposed gate configuration has the
added advantage that no dc charge current is generated. Our study also shows
that the spin current generation can be enhanced significantly in a double
finger-gate configuration.Comment: 4 pages,4 figure
- …