64 research outputs found

    A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity

    Get PDF
    We constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions. Data acquisition and the control of scanning are performed by a LeCroy digital oscilloscope. The total cost of construction was one order of magnitude lower than that of a typical Ti:sapphire system. The entire imaging apparatus, including the laser, fits comfortably onto a small rig for electrophysiology. Despite the low cost and simplicity, the convergence of several new technologies allowed us to achieve the following capabilities: i) full-frame acquisition at video rates suitable for patch clamping; ii) random access in under ten microseconds with dwelling ability in the nominal focal plane; iii) three-dimensional random access with the ability to perform fast volume sweeps at kilohertz rates; and iv) fluorescence lifetime imaging. We demonstrate the ability to record action potentials with high temporal resolution using intracellularly loaded potentiometric dye di-2-ANEPEQ. Our design proffers easy integration with electrophysiology and promises a more widespread adoption of functional two-photon imaging as a tool for the study of neuronal activity. The software and firmware we developed is available for download at http://neurospy.org/ under an open source license

    Ultrafast amplified fiber laser for laser-wire measurements in particle accelerators

    No full text
    We report on the generation of sub-500fs pulses of 3.5μJ energy at 6.49 MHz repetition rate and 1037 nm based on the amplification of an Ytterbium femtosecond oscillator, frequency locked to an external source in a double stage fiber chirped pulse amplification system. The system is operated in a burst mode where bunches of pulses of 900μs duration are amplified at 5Hz repetition rate. Such a system is dedicated to the measurement the spatial distribution of electron beam in future large scale ultra-high brightness particle collider

    High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage

    No full text
    International audienceA simple, compact, and efficient few-cycle laser source at a central wavelength of 1 µm is presented. The system is based on a high-energy femtosecond ytterbium-doped fiber amplifier delivering 130 fs, 250 µJ pulses at 200 kHz, corresponding to 1.5 GW of peak power and an average power of 50 W. The unprecedented short pulse duration at the output of this system is obtained by use of spectral intensity and phase shaping, allowing for both gain narrowing mitigation and the compensation of the nonlinear accumulated spectral phase. This laser source is followed by a single-stage of nonlinear compression in a xenon-filled capillary, allowing for the generation of 14 fs, 120 µJ pulses at 200 kHz resulting in 24 W of average power. High-harmonic generation driven by this type of source will trigger numerous new applications in the XUV range and attosecond science

    Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    No full text
    Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps)

    High-power two-cycle ultrafast source based on hybrid nonlinear compression

    Get PDF
    International audienceWe demonstrate a hybrid dual-stage nonlinear compression scheme, which allows the temporal compression of 330 fs-pulses down to 6.8 fs-pulses, with an overall transmission of 61%. This high transmission is obtained by using a first compression stage based on a gas-filled multipass cell, and a second stage based on a large-core gas-filled capillary. The source output is fully characterized in terms of spectral, temporal, spatial, and short-and long-term stability properties. The system's compactness, stability, and high average power makes it ideally suited to drive high photon flux XUV sources through high harmonic generation
    corecore