5,815 research outputs found
Spin Dependence of Interfacial Reflection Phase Shift at Cu/Co Interface
The spin dependent reflection at the interface is the key element to
understand the spin transport. By completely solving the scattering problem
based on first principles method, we obtained the spin resolved reflectivity
spectra. The comparison of our theoretical results with experiment is good in a
large energy scale from Fermi level to energy above vacuum level. It is found
that interfacial distortion is crucial for understanding the spin dependence of
the phase gain at the CuCo interface. Near the Fermi level, image state
plays an important role to the phase accumulation in the copper film.Comment: 6 papges, 3 figures, accepted by Physical Review
Object Picture of Quasinormal Modes for Stringy Black Holes
We study the quasinormal modes (QNMs) for stringy black holes. By using
numerical calculation, the relations between the QNMs and the parameters of
black holes are minutely shown. For (1+1)-dimensional stringy black hole, the
real part of the quasinormal frequency increases and the imaginary part of the
quasinormal frequency decreases as the mass of the black hole increases.
Furthermore, the dependence of the QNMs on the charge of the black hole and the
flatness parameter is also illustrated. For (1+3)-dimensional stringy black
hole, increasing either the event horizon or the multipole index, the real part
of the quasinormal frequency decreases. The imaginary part of the quasinormal
frequency increases no matter whether the event horizon is increased or the
multipole index is decreased.Comment: 4 pages, 5 figure
Cavity optomechanical coupling assisted by an atomic gas
We theoretically study a cavity filled with atoms, which provides the
optical-mechanical interaction between the modified cavity photonic field and a
movable mirror at one end. We show that the cavity field ``dresses'' these
atoms, producing two types of polaritons, effectively enhancing the radiation
pressure of the cavity field upon the end mirror, as well as establishing an
additional squeezing mode of the end mirror. This squeezing produces an
adiabatic entanglement, which is absent in usual vacuum cavities, between the
oscillating mirror and the rest of the system. We analyze the entanglement and
quantify it using the Loschmidt echo and fidelity.Comment: 8 pages, 4 figure
Coexistence of multi-photon processes and longitudinal couplings in superconducting flux qubits
In contrast to natural atoms, the potential energies for superconducting flux
qubit (SFQ) circuits can be artificially controlled. When the inversion
symmetry of the potential energy is broken, we find that the multi-photon
processes can coexist in the multi-level SFQ circuits. Moreover, there are not
only transverse but also longitudinal couplings between the external magnetic
fields and the SFQs when the inversion symmetry of potential energy is broken.
The longitudinal coupling would induce some new phenomena in the SFQs. Here we
will show how the longitudinal coupling can result in the coexistence of
multi-photon processes in a two-level system formed by a SFQ circuit. We also
show that the SFQs can become transparent to the transverse coupling fields
when the longitudinal coupling fields satisfy the certain conditions. We
further show that the quantum Zeno effect can also be induced by the
longitudinal coupling in the SFQs. Finally we clarify why the longitudinal
coupling can induce coexistence and disappearance of single- and two-photon
processes for a driven SFQ, which is coupled to a single-mode quantized field.Comment: 11 pages, 6 figure
- …