625 research outputs found

    Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of <it>Arabidopsis </it>microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones.</p> <p>Results</p> <p>We utilized such microarray data for prediction of <it>cis</it>-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent <it>cis</it>-regulatory elements with the aid of their feature of preferential appearance in the promoter region.</p> <p>Conclusions</p> <p>Our prediction of <it>Arabidopsis cis</it>-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.</p

    Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens

    Get PDF
    Multidrug-resistant (MDR) Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was examined. Although the potential use of predatory bacteria to attack MDR pathogens has been suggested, the data supporting these claims is lacking. By conducting predation experiments we have established that predatory bacteria have the capacity to attack clinical strains of a variety of ß-lactamase-producing, MDR Gram-negative bacteria. Our observations indicate that predatory bacteria maintained their ability to prey on MDR bacteria regardless of their antimicrobial resistance, hence, might be used as therapeutic agents where other antimicrobial drugs fail. © 2013 Kadouri et al

    Additional Resection of the Pancreas Body Prevents Postoperative Pancreas Fistula in Patients with Portal Annular Pancreas Who Undergo Pancreaticoduodenectomy

    Get PDF
    Portal annular pancreas (PAP) is a rare variant in which the uncinate process of the pancreas extends to the dorsal surface of the pancreas body and surrounds the portal vein or superior mesenteric vein. Upon pancreaticoduodenectomy (PD), when the pancreas is cut at the neck, two cut surfaces are created. Thus, the cut surface of the pancreas becomes larger than usual and the dorsal cut surface is behind the portal vein, therefore pancreatic fistula after PD has been reported frequently. We planned subtotal stomach-preserving PD in a 45-year-old woman with underlying insulinoma of the pancreas head. When the pancreas head was dissected, the uncinate process was extended and fused to the dorsal surface of the pancreas body. Additional resection of the pancreas body 1 cm distal to the pancreas tail to the left side of the original resection line was performed. The new cut surface became one and pancreaticojejunostomy was performed as usual. No postoperative complications such as pancreatic fistula occurred. Additional resection of the pancreas body may be a standardized procedure in patients with PAP in cases of pancreas cut surface reconstruction

    Firefly Luciferase Mutant with Enhanced Activity and Thermostability

    Get PDF
    The luciferase isolated from the firefly Photinus pyralis (Ppy) catalyzes a two-step reaction that results in the oxidation of d-luciferin accompanied by emission of yellow-green light with a peak at 560 nm. Among many applications, Ppy luciferase has been used extensively as a reporter gene in living cells and organisms. However, some biological applications are limited by the low stability of the luciferase and limited intracellular luciferin concentration. To address these challenges, efforts to protein engineer Ppy luciferase have resulted in a number of mutants with improved properties such as thermostability, pH tolerance, and catalytic turn over. In this work, we combined amino acid mutations that were shown to enhance the enzyme\u27s thermostability (Mutant E) with those reported to enhance catalytic activity (LGR). The resulting mutant (YY5) contained eight amino acid changes from the wild-type luciferase and exhibited both improved thermostability and brighter luminescence at low luciferin concentrations. Therefore, YY5 may be useful for reporter gene applications

    Selection of silk-binding peptides by phage display

    Get PDF
    Peptides that bind to silkworm-derived silk fibroin fiber were selected from a phage-displayed random peptide library. The selected silk-binding peptides contained a consensus sequence QSWS which is important for silk-binding as confirmed by binding assays using phage and synthetic peptides. With further optimization, we anticipate that the silk-binding peptides will be useful for functionalization of silk for biomaterial applications
    corecore