17 research outputs found

    Non-lethal heat shock protects gnotobiotic <i>Artemia franciscana</i> larvae against virulent <i>Vibrios</i>

    Get PDF
    Brine shrimp Artemia were exposed under gnotobiotic conditions to a non-lethal heat shock (NLHS) from 28 to 32, 37 and 40°C. Different recovery periods (2, 6, 12 and 24 h) and different heat-exposure times (15, 30, 45 and 60 min) were tested. After these NLHS, Artemia was subsequently challenged with Vibrio. Challenge tests were performed in stressed and unstressed nauplii at concentrations of 107 cells ml-1 of pathogenic bacteria, Vibrio campbellii and Vibrio proteolyticus. A NLHS with an optimal treatment of 37°C for 30 min and a subsequent 6 h recovery period resulted in a cross-protection against pathogenic Vibrio. A 100% increase in the larval survival (P < 0.05) was observed. We have also demonstrated by Western blot that a NLHS increases the expression of HSP-70 in heat-shocked (HS) treated animals. This report is the first to reveal a cross protection of a NLHS against deleterious bacterial challenges in living crustaceans. The putative role of heat shock proteins (HSPs) in this process is discussed

    Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    Get PDF
    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors

    Viral–Host Interactions That Control HIV-1 Transcriptional Elongation

    No full text
    corecore