438 research outputs found
Denaturation transition of stretched DNA
We generalize the Poland-Scheraga model to consider DNA denaturation in the
presence of an external stretching force. We demonstrate the existence of a
force-induced DNA denaturation transition and obtain the temperature-force
phase diagram. The transition is determined by the loop exponent for which
we find the new value such that the transition is second order
with in . We show that a finite stretching force
destabilizes DNA, corresponding to a lower melting temperature , in
agreement with single-molecule DNA stretching experiments.Comment: 5 pages, 3 figure
Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles
Quasiparticles are an important decoherence mechanism in superconducting
qubits, and can be described with a complex admittance that is a generalization
of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with
a tunnel junction, we verify qualitatively the expected change of the decay
rate and frequency in a phase qubit. With their relative change in agreement to
within 4% of prediction, the theory can be reliably used to infer quasiparticle
density. We describe how settling of the decay rate may allow determination of
whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8
pages, 3 figure
Deterministic entanglement of photons in two superconducting microwave resonators
Quantum entanglement, one of the defining features of quantum mechanics, has
been demonstrated in a variety of nonlinear spin-like systems. Quantum
entanglement in linear systems has proven significantly more challenging, as
the intrinsic energy level degeneracy associated with linearity makes quantum
control more difficult. Here we demonstrate the quantum entanglement of photon
states in two independent linear microwave resonators, creating N-photon NOON
states as a benchmark demonstration. We use a superconducting quantum circuit
that includes Josephson qubits to control and measure the two resonators, and
we completely characterize the entangled states with bipartite Wigner
tomography. These results demonstrate a significant advance in the quantum
control of linear resonators in superconducting circuits.Comment: 11 pages, 11 figures, and 3 tables including supplementary materia
Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot
We investigate ways for the exchange of information (explicit communication)
among deaf and dumb mobile robots scattered in the plane. We introduce the use
of movement-signals (analogously to flight signals and bees waggle) as a mean
to transfer messages, enabling the use of distributed algorithms among the
robots. We propose one-to-one deterministic movement protocols that implement
explicit communication. We first present protocols for synchronous robots. We
begin with a very simple coding protocol for two robots. Based on on this
protocol, we provide one-to-one communication for any system of n \geq 2 robots
equipped with observable IDs that agree on a common direction (sense of
direction). We then propose two solutions enabling one-to-one communication
among anonymous robots. Since the robots are devoid of observable IDs, both
protocols build recognition mechanisms using the (weak) capabilities offered to
the robots. The first protocol assumes that the robots agree on a common
direction and a common handedness (chirality), while the second protocol
assumes chirality only. Next, we show how the movements of robots can provide
implicit acknowledgments in asynchronous systems. We use this result to design
asynchronous one-to-one communication with two robots only. Finally, we combine
this solution with the schemes developed in synchronous settings to fit the
general case of asynchronous one-to-one communication among any number of
robots. Our protocols enable the use of distributing algorithms based on
message exchanges among swarms of Stigmergic robots. Furthermore, they provides
robots equipped with means of communication to overcome faults of their
communication device
Multiplexed dispersive readout of superconducting phase qubits
We introduce a frequency-multiplexed readout scheme for superconducting phase
qubits. Using a quantum circuit with four phase qubits, we couple each qubit to
a separate lumped-element superconducting readout resonator, with the readout
resonators connected in parallel to a single measurement line. The readout
resonators and control electronics are designed so that all four qubits can be
read out simultaneously using frequency multiplexing on the one measurement
line. This technology provides a highly efficient and compact means for reading
out multiple qubits, a significant advantage for scaling up to larger numbers
of qubits.Comment: 4 pages, 4 figure
Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits
We experimentally demonstrate quantum process tomography of controlled-Z and
controlled-NOT gates using capacitively-coupled superconducting phase qubits.
These gates are realized by using the state of the phase qubit. We
obtain a process fidelity of 0.70 for the controlled-phase and 0.56 for the
controlled-NOT gate, with the loss of fidelity mostly due to single-qubit
decoherence. The controlled-Z gate is also used to demonstrate a two-qubit
Deutsch-Jozsa algorithm with a single function query.Comment: 10 pages, 8 figures, including supplementary informatio
Planar Superconducting Resonators with Internal Quality Factors above One Million
We describe the fabrication and measurement of microwave coplanar waveguide
resonators with internal quality factors above 10 million at high microwave
powers and over 1 million at low powers, with the best low power results
approaching 2 million, corresponding to ~1 photon in the resonator. These
quality factors are achieved by controllably producing very smooth and clean
interfaces between the resonators' aluminum metallization and the underlying
single crystal sapphire substrate. Additionally, we describe a method for
analyzing the resonator microwave response, with which we can directly
determine the internal quality factor and frequency of a resonator embedded in
an imperfect measurement circuit.Comment: 4 pages, 3 figures, 1 tabl
- …