383 research outputs found

    High performance subgraph mining in molecular compounds

    Get PDF
    Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations

    Feedback-free optical cavity with self-resonating mechanism

    Full text link
    We demonstrated the operation of a high finesse optical cavity without utilizing an active feedback system to stabilize the resonance. The effective finesse, which is a finesse including the overall system performance, of the cavity was measured to be 394,000±10,000394,000 \pm 10,000, and the laser power stored in the cavity was 2.52±0.132.52 \pm 0.13 kW, which is approximately 187,000 times greater than the incident power to the cavity. The stored power was stabilized with a fluctuation of 1.7%1.7 \%, and we confirmed continuous cavity operation for more than two hours. This result has the potential to trigger an innovative evolution for applications that use optical resonant cavities such as compact photon sources with laser-Compton scattering or cavity enhanced absorption spectroscopy.Comment: 5 pages, 7 figure

    Numerical simulation of dynamic behavior of droplet on solid surface by the two-phase lattice Boltzmann method

    Get PDF
    The dynamic behavior of a droplet on a solid surface is simulated by the lattice Boltzmann method (LBM) for two-phase fluids with large density differences; the wetting boundary condition on solid walls is incorporated in this simulation. By using the method, the dynamic behavior of a droplet impinging on a horizontal wall is investigated in terms of various Weber numbers. The dynamic contact angle, the contact line velocity, and the wet length are calculated, and found to be in good agreement with available experimental data. In addition, the method is applied to simulations of the collision of a falling droplet with a stationary droplet on a solid surface. The behavior of the droplets and the mixing process during their collision are simulated in terms of various impact velocities and several static contact angles on the solid surface. It is seen that mixing occurs around the rim of the coalescent droplet due to the circular flows. Also, the relationship between the mixing rate of the primary coalescent droplet and Weber number is investigated.ArticleCOMPUTERS & FLUIDS. 40(1):68-78 (2011)journal articl

    Photon generation by laser-Compton scattering at the KEK-ATF

    Full text link
    We performed a photon generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the cavity. As a result, we observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which corresponds to a yield of 10^8 photons in a second.Comment: 3 pages, 5 figures, Preprint submitted to TIPP09 Proceedings in NIM

    A parametric study of cognitive defusion and the believability and discomfort of negative self-relevant thoughts

    Get PDF
    A previous time series study showed that rapidly repeating a single word version of a negative self-referential thought reduced the discomfort and the believability associated with that thought. The present parametric study examined whether durations of word repetition were differentially effective in altering the discomfort and believability of negative self-referential thought. In two studies, both discomfort and believability varied systematically with the duration of word repetition. The effects of rapid repetition on emotional discomfort bottomed out after 3 to 10 seconds of rapid repetition, while the effects on believability did so after 20 to 30 seconds of repetition. This study lends support to the cognitive defusion interpretation of the effect of word repetition, suggesting that emotional discomfort and believability may be distinctive functional aspects of cognitive events

    Design of a Polarised Positron Source Based on Laser Compton Scattering

    Full text link
    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.Comment: Proposal submitted to the ILC workshop, Snowmass 2005. v2: note number adde

    Electrodeposition of Nano-crystalline Nickel-Molybdenum Alloys

    Get PDF
    Nano-crystalline nickel-molybdenum alloys were electrochemically synthesized from aqueous solution. With increasing molybdenum content in the alloy up to 23.6%, the crystal grain size decreased down to several nanometers scale. The magnetic coercive force decreased to several oersteds with increasing the molybdenum content. Soft magnetic property of the alloy was improved compared with that of pure nickel.Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008) 平成20年1月29日(火)於長崎大学 Poster Presentatio
    corecore