86,278 research outputs found
Design of high-frequency Gm-C wavelet filters
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ECCTD.2009.5274969A high-frequency wavelet filter which employs Gm-C blocks based on leap-frog (LF) multiple-loop feedback (MLF) structure is presented. The proposed method is well suitable for high-quality high-frequency operation since the Gm-C based filter can achieve high frequency, whilst LF MLF configuration has the characteristics of lower magnitude sensitivity and capability of realizing arbitrary rational functions. The Marr wavelet is selected as an example in this paper, and the design for a 100 MHz frequency operation is elaborated. The wavelet filter is simulated using TSMC 1.8 V 0.18 mum CMOS technology. Simulation results indicate that the proposed method is feasible for high frequency operation with relatively low power consumption.Peer reviewe
Kinetics of dissociative chemisorption of methane and ethane on Pt(110)-(1X2)
The initial probability of dissociative chemisorption Pr of methane and ethane on the highly corrugated, reconstructed Pt(110)‐(1×2) surface has been measured in a microreactor by counting the number of carbon atoms on the surface following the reaction of methane and ethane on the surface which was held at various constant temperatures between 450 and 900 K during the reaction. Methane dissociatively chemisorbs on the Pt(110)‐(1×2) surface with an apparent activation energy of 14.4 kcal/mol and an apparent preexponential factor of 0.6. Ethane chemisorbs dissociatively with an apparent activation energy of 2.8 kcal/mol and an apparent preexponential factor of 4.7×10^(−3). Kinetic isotope effects were observed for both reactions. The fact that P_r is a strong function of surface temperature implies that the dissociation reactions proceed via a trapping‐mediated mechanism. A model based on a trapping‐mediated mechanism is used to explain the observed kinetic behavior. Kinetic parameters for C–H bond dissociation of the thermally accommodated methane and ethane are extracted from the model
Large Magneto-Dielectric Effects in Orthorhombic HoMnO3 and YMnO3
We have found a remarkable increase (up to 60 %) of the dielectric constant
with the onset of magnetic order at 42 K in the metastable orthorhombic
structures of YMnO3 and HoMnO3 that proves the existence of a strong
magneto-dielectric coupling in the compounds. Magnetic, dielectric, and
thermodynamic properties show distinct anomalies at the onset of the
incommensurate magnetic order and thermal hysteresis effects are observed
around the lock-in transition temperature at which the incommensurate magnetic
order locks into a temperature independent wave vector. The orders of Mn3+
spins and Ho3+ moments both contribute to the magneto-dielectric coupling. A
large magneto-dielectric effect was observed in HoMnO3 at low temperature where
the dielectric constant can be tuned by an external magnetic field resulting in
a decrease of up to 8 % at 7 Tesla. By comparing data for YMnO3 and HoMnO3 the
contributions to the coupling between the dielectric response and Mn and Ho
magnetic orders are separated.Comment: revised manuscrip
A modified atmospheric non-hydrostatic model on low aspect ratio grids
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tellus A 64 (2012): 17516, doi:10.3402/tellusa.v64i0.17516.It is popular to use a horizontal explicit and a vertical implicit (HE-VI) scheme in the compressible nonhydrostatic (NH) model. However, when the aspect ratio becomes small, a small time-interval is required in HE-VI, because the Courant-Fredrich-Lewy (CFL) criterion is determined by the horizontal grid spacing. Furthermore, simulations from HE-VI can depart from the forward–backward (FB) scheme in NH even when the time interval is less than the CFL criterion allowed. Hence, a modified non-hydrostatic (MNH) model is proposed, in which the left-hand side of the continuity equation is multiplied by a parameter d (45d516, in this study). When the linearized MNH is solved by FB (can be other schemes), the eigenvalue shows that MNH can suppress the frequency of acoustic waves very effectively but does not have a significant impact on the gravity waves. Hence, MNH enables to use a longer time step than that allowed in the original NH. When the aspect ratio is small, MNH solved by FB can be more accurate and efficient than the NH solved by HE-VI. Therefore, MNH can be very useful to study cloud, Large Eddy Simulation (LES), turbulence, flow over complex terrains, etc., which require fine resolution in both horizontal and vertical directions
Electron-doped phosphorene: A potential monolayer superconductor
We predict by first-principles calculations that the electron-doped
phosphorene is a potential BCS-like superconductor. The stretching modes at the
Brillouin-zone center are remarkably softened by the electron-doping, which
results in the strong electron-phonon coupling. The superconductivity can be
introduced by a doped electron density () above
cm, and may exist over the liquid helium temperature when cm. The maximum critical temperature is predicted to be
higher than 10 K. The superconductivity of phosphorene will significantly
broaden the applications of this novel material
- …