207 research outputs found
A comparison of presettlement and modern forest composition along an elevation gradient in central New Hampshire
Tree species composition is influenced not only by edaphic and climatic factors but also by natural and human-caused disturbances. To understand interactions among these influences, we compared forest species composition data from the time of European settlement with modern data. We derived elevation data for 2529 trees mapped by early land surveys (1770–1850) across a 1000 m elevation gradient in central New Hampshire and compared these with modern data (2004–2009) from the Forest Inventory and Analysis program (123 plots containing 2126 trees) and from permanent plots representing case studies of different land-use histories. Spruce and beech are much less abundant today at all elevations than they were prior to settlement, while maples and birches have increased. Fir, hemlock, pines, and oaks have changed little in distribution, although pines and oaks increased in abundance somewhat. Land-use history (agriculture below 500 m and cutting of various intensities at all elevations) is likely the primary explanation for these shifts, although climate change is also an important factor for some. A clearer understanding of presettlement forest composition improves our ability to separate the relative importance of natural and human-driven influences on the species composition of today’s forests
Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. The conversion of natural forests to tree plantations alters the quality and decreases the quantity of litter inputs into the soil, but how the alteration of litter inputs affect soil organic matter (SOM) decomposition remain unclear. We examined SOM decomposition by adding 13C-labeled leaf-litter of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) to soils from a natural evergreen broad-leaved forest and an adjacent Chinese fir plantation converted from a natural evergreen broad-leaved forest 42 years ago. Over 195 days, we monitored CO2 efflux and its δ13C, microbial biomass, and the composition of microbial groups by phospholipid fatty acids (PLFAs). To distinguish priming mechanisms, partitioning of C sources in CO2 and microbial biomass was determined based on δ13C. Leaf-litter addition to natural forest increased microbial biomass and induced up to 14% faster SOM decomposition (positive priming) than that in soil without litter. In contrast, negative priming in soils under plantation indicated preferential use of added leaf-litter rather than recalcitrant SOM. This preferential use of leaf-litter was supported by an increased fungal to bacterial ratio and litter-derived (13C) microbial biomass, reflecting increased substrate recalcitrance, the respective changes in microbial substrate utilization and increased C use efficiency. The magnitude and direction of priming effects depend on microbial preferential utilization of new litter or SOM. Concluding, the impact of coniferous leaf-litter inputs on the SOM priming is divergent in natural evergreen broad-leaved forests and plantations, an important consideration in understanding long-term C dynamics and cycling in natural and plantation forest ecosystems
Streptococcus suis Meningitis, United States
Streptococcus suis Meningitis, United State
The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses
Stable isotope and fatty acid analyses were used to study carbon sources for animals in a submerged plant bed. Epiphytes growing on Potamogeton perfoliatus, sand microflora, and alder leaves were the most important carbon sources. The most abundant macrophyte, P. perfoliatus was unimportant as a food source. Modelling (IsoSource) showed that epiphytes were the most important food source for the most abundant benthic invertebrates, the isopod Asellus aquaticus (annual mean contribution 64%), the amphipod Gammarus pulex (66%), and the gastropod Potamopyrgus antipodarum (83%). The mean annual contributions of sand microflora were, respectively, 21, 19, and 9%; and of alder leaves, 15, 15, and 8% for these three species. The relative importance of carbon sources varied seasonally. The relative contribution of epiphytes was lowest for all three grazer species in July: A. aquaticus 38%, G. pulex 43%, and P. antipodarum 42%. A decline in epiphyte biomass in summer may have caused this switch to less attractive food sources. P. perfoliatus provided habitat and shelter for consumers, but food was mainly supplied indirectly by providing space for attached epiphytes, which are fast-growing and provide a highly nutritious food source
Depth-related effects on a meiofaunal community dwelling in the periphyton of a mesotrophic lake
Kreuzinger B, Schroeder F, Majdi N, Traunspurger W. Depth-related effects on a meiofaunal community dwelling in the periphyton of a mesotrophic lake. PLoS One. 2015;10(9): e0137793.Periphyton is a complex assemblage of micro- and meiofauna embedded in the organic matrix that coats most submerged substrate in the littoral of lakes. The aim of this study was to better understand the consequences of depth-level fluctuation on a periphytic community. The effects of light and wave disturbance on the development of littoral periphyton were evaluated in Lake Erken (Sweden) using an experimental design that combined in situ shading with periphyton depth transfers. Free-living nematodes were a major contributor to the meiofaunal community. Their species composition was therefore used as a proxy to distinguish the contributions of light- and wave-related effects. The periphyton layer was much thicker at a depth of 30 cm than at 200 cm, as indicated by differences in the amounts of organic and phototrophic biomass and meiofaunal and nematode densities. A reduction of the depth-level of periphyton via a transfer from a deep to a shallow location induced rapid positive responses by its algal, meiofaunal, and nematode communities. The slower and weaker negative responses to the reverse transfer were attributed to the potentially higher resilience of periphytic communities to increases in the water level. In the shallow littoral of the lake, shading magnified the effects of phototrophic biomass erosion by waves, as the increased exposure to wave shear stress was not compensated for by an increase in photosynthesis. This finding suggests that benthic primary production will be strongly impeded in the shallow littoral zones of lakes artificially shaded by construction or embankments. However, regardless of the light constraints, an increased exposure to wave action had a generally positive short-term effect on meiofaunal density, by favoring the predominance of species able to anchor themselves to the substrate, especially the Chromadorid nematode Punctodora ratzeburgensis
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: methodology
Background
Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD) in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR) test (a proxy measure of endothelial function) for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1) endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2) endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men.
Methods/Design
A total of 1972 patients (812 men and 1160 women) undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events).
Discussion
This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of risk stratification in women on par with that of men
A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium∶solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection
- …