23 research outputs found

    The Effects of Cycle Temperature and Cycle Pressure Ratios on the Performance of an Irreversible Otto Cycle

    No full text
    This paper reports the thermodynamic optimization based on the maximum mean effective pressure, maximum power and maximum thermal efficiency criteria for an irreversible Otto heat engine model which includes internal irreversibility resulting from the adiabatic processes. The mean effective pressure, power output, and thermal efficiency are obtained by introducing the compression ratio, cycle temperature ratio, specific heat ratio and the compression and expansion efficiencies. Optimal performance and design parameters of the Otto cycle are obtained analytically for the maximum power and maximum thermal efficiency conditions and numerically for the maximum mean effective pressure conditions. The results at maximum mean effective pressure conditions are compared with those results obtained by using the maximum power and maximum thermal efficiency criteria. The effects of the cycle temperature ratio and cycle pressure ratio on the general and optimal performances are investigated

    Performance analysis of multipurpose refrigeration system (MRS) on fishing vessel

    No full text
    The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF) reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP), exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability). According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502). The effects of the condenser, freezerevaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32

    Performance Analysis of Multipurpose Refrigeration System (MRS) on Fishing Vessel

    No full text
    The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF) reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP), exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability). According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502). The effects of the condenser, freezer-evaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32

    Thermodynamic Analysis of a Steam Power Plant with Double Reheat and Feed Water Heaters

    No full text
    A steam cycle with double reheat and turbine extraction is presented. Six heaters are used, three of them at high pressure and the other three at low pressure with deaerator. The first and second law analysis for the cycle and optimization of the thermal and exergy efficiencies are investigated. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. The exergy and irreversibility analyses of each component of the cycle are determined. Effects of turbine inlet pressure, boiler exit steam temperature, and condenser pressure on the first and second laws' efficiencies are investigated. Also the best turbine extraction pressure on the first law efficiency is obtained. The results show that the biggest exergy loss occurs in the boiler followed by the turbine. The results also show that the overall thermal efficiency and the second law efficiency decrease as the condenser pressure increases for any fixed outlet boiler temperature, however, they increase as the boiler temperature increases for any condenser pressure. Furthermore, the best values of extraction pressure from high, intermediate, and low pressure turbine which give the maximum first law efficiencies are obtained based on the required heat load corresponding to each exit boiler temperature
    corecore