208 research outputs found
Magnetic Transition Temperature of (La,Sr)MnO
Using the Kondo lattice model with classical spins in infinite dimension,
magnetic phase transition in the perovskite-type transition-metal oxide
(La,Sr)MnO is theoretically studied. On the Bethe lattice, the
self-consistency equations are solved exactly. Curie temperatures at the region
of double-exchange ferromagnetism as well as the Neel
temperature at are well reproduced quantitatively. Pressure effect on the
Curie temperature is also discussed.Comment: 7 pages, 1 PS file with 3 figures appended at the end, LaTe
Interplay of the CE-type charge ordering and the A-type spin ordering in a half-doped bilayer manganite La{1}Sr{2}Mn{2}O{7}
We demonstrate that the half-doped bilayer manganite La_{1}Sr_{2}Mn_{2}O_{7}
exhibits CE-type charge-ordered and spin-ordered states below K and below K, respectively. However, the volume
fraction of the CE-type ordering is relatively small, and the system is
dominated by the A-type spin ordering. The coexistence of the two types of
ordering is essential to understand its transport properties, and we argue that
it can be viewed as an effective phase separation between the metallic
orbital ordering and the charge-localized
orbital ordering.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Electron- and Hole-Doping Effects on -site Ordered NdBaMnO
We have investigated electron- and hole-doping effects on -site ordered
perovskite manganite NdBaMnO, which has the -type (layered)
antiferromagnetic (AFM) ground state. Electrons (holes) are introduced by
partial substitution of Ba (Nd) with Nd (Ba).
Electron-doping generates ferromagnetic (FM) clusters in the -type AFM
matrix. With increasing the electron-doping level, the volume fraction of the
FM phase or the number of the FM clusters is abruptly increasing. In contrast,
the -type AFM phase is robust against the hole-doping, and no FM correlation
is observed in the hole-doped NdBaMnO.Comment: 8 pages, 5 figures, to be published in Journal of the Physical
Society of Japa
Resonant inelastic x-ray scattering study of hole-doped manganites La1-xSrxMnO3 (x=0.2 and 0.4)
Electronic excitations near the Fermi energy in the hole doped manganese
oxides (La1-xSrxMnO3, x=0.2 and 0.4) have been elucidated by using the resonant
inelastic x-ray scattering (RIXS) method. A doping effect in the strongly
correlated electron systems has been observed for the first time. The
scattering spectra show that a salient peak appears in low energies indicating
the persistence of the Mott gap. At the same time, the energy gap is partly
filled by doping holes and the energy of the spectral weight shifts toward
lower energies. The excitation spectra show little change in the momentum space
as is in undoped LaMnO3, but the scattering intensities in the low energy
excitations of x=0.2 are anisotropic as well as temperature dependent, which
indicates a reminiscence of the orbital nature
An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3
We report a synchrotron x-ray scattering study of the magnetoresistive
manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes
an x-ray induced structural transition at which charge ordering of Mn^3+ and
Mn^4+ ions characteristic to the low-temperature state of this compound is
destroyed. The transition is persistent but the charge-ordered state can be
restored by heating above the charge-ordering transition temperature and
subsequently cooling. The charge-ordering diffraction peaks, which are
broadened at all temperatures, broaden more upon x-ray irradiation, indicating
the finite correlation length of the charge-ordered state. Together with the
recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results
demonstrate that the photoinduced structural change is a common property of the
charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data
analysis mad
Existence of orbital polarons in ferromagnetic insulating LaSrMnO (0.110.14) evidenced by giant phonon softening
We present an inelastic light scattering study of single crystalline
(LaPr)SrMnO (, and
,). A giant softening up to 20 - 30 cm of the
Mn-O breathing mode has been observed only for the ferromagnetic insulating
(FMI) samples () upon cooling below the Curie
temperature. With increasing Pr-doping the giant softening is gradually
suppressed. This is attributed to a coupling of the breathing mode to orbital
polarons which are present in the FMI phase.Comment: 4 pages, 5 figure
Observation of anomalous single-magnon scattering in half-metallic ferromagnets by chemical pressure control
Temperature variation of resistivity and specific heat have been measured for
prototypical half-metallic ferromagnets,
R_0.6Sr_0.4MnO_3, with controlling the one-electron bandwidth W. We have
found variation of the temperature scalings in the resistivity from
T^2 (R = La, and Nd) to T^3 (R = Sm), and have interpreted the $T^3-law in
terms of the anomalous single-magnon scattering (AMS) process in the
half-metallic system.Comment: To appear in Phys. Rev. Lett., 3 pages + 4 EPS figure
Spin Excitation Spectrum of LaMnO
As an effective model to describe perovskite-type manganates (La,)MnO,
the double-exchange model on a cubic lattice is investigated. Spin excitation
spectrum of the model in the ground state is studied using the spin wave
approximation. Spin wave dispersion relation observed in the inelastic neutron
scattering experiment of LaPbMnO is reproduced. Effective
values for the electron bandwidth as well as Hund's coupling is estimated from
the data.Comment: 10 pages LaTeX including 4 PS figure
Resonant X-ray Study on the Bi-Layered Perovskite Mn Oxide LaSr2Mn2O7
Charge and orbital ordering behaviors in the half doped bi-layered compound
LaSr2Mn2O7 have been studied by resonant and non-resonant X-ray scattering.
Three different order parameters, which correspond to the A-type
antiferromagnetic, a charge and an orbital ordered states, were observed by
measuring the magnetostriction and the superlattice peaks characterized by
wavevectors (1/2 1/2 0) and (1/4 1/4 0), respectively. The superlattice
reflections indicating the charge and orbital ordered states were observed
below 210 K. Both the intensities reach a maximum at 160 K on cooling and
become very weak below 100 K. The peak width of the charge ordered state agrees
with that of the orbital ordered state at all temperatures studied. These
results indicate that both the states originate from a single phase and that
the charge/orbital ordered islands with definite interfaces disperse in the
A-type antiferromagnetic phase. The dimensionality of the charge/orbital
ordered phase is discussed using this model.Comment: 9pages, 10 figure
Relation between crystal and magnetic structures of the layered manganites La2-2xSr1+2xMn2O7 (0.30 =< x =< 0.50)
Comprehensive neutron-powder diffraction and Rietveld analyses were carried
out to clarify the relation between the crystal and magnetic structures of
La2-2xSr1+2xMn2O7 (0.30 =< x =< 0.50). The Jahn-Teller (JT) distortion of Mn-O6
octahedra, i.e., the ratio of the averaged apical Mn-O bond length to the
equatorial Mn-O bond length, is Delta_JT=1.042(5) at x=0.30, where the magnetic
easy-axis at low temperature is parallel to the c axis. As the JT distortion
becomes suppressed with increasing x, a planar ferromagnetic structure appears
at x =< 0.32, which is followed by a canted antiferromagnetic (AFM) structure
at x =< 0.39. The canting angle between neighboring planes continuously
increases from 0 deg (planar ferromagnet: 0.32 =< x < 0.39) to 180 deg (A-type
AFM: x=0.48 where Delta_JT=1.013(5)). Dominance of the A-type AF structure with
decrease of JT distortion can be ascribed to the change in the eg orbital state
from d3z^2-r^2 to dx^2-y^2
- …