325 research outputs found
Comprehensive analysis of liver and blood miRNA in precancerous conditions
Streptozotocin administration to mice (STZ-mice) induces type I diabetes and hepatocellular carcinoma (HCC). We attempted to elucidate the carcinogenic mechanism and the miRNA expression status in the liver and blood during the precancerous state. Serum and liver tissues were collected from STZ-mice and non-treated mice (CTL-mice) at 6, 10, and 12 W. The exosome enriched fraction extracted from serum was used. Hepatic histological examination and hepatic and exosomal miRNA expression analysis were serially performed using next-generation sequencing (NGS). Human miRNA expression analysis of chronic hepatitis liver tissue and exosomes, which were collected before starting the antiviral treatment, were also performed. No inflammation or fibrosis was found in the liver of CTL-mice during the observation period. In STZ-mice, regeneration and inflammation of hepatocytes was found at 6 W and nodules of atypical hepatocytes were found at 10 and 12 W. In the liver tissue, during 6–12 W, the expression levels of let-7f-5p, miR-143-3p, 148a-3p, 191-5p, 192-5p, 21a-5p, 22-3p, 26a-5p, and 92a-3p was significantly increased in STZ-mice, and anti-oncogenes of their target gene candidates were down-regulated. miR-122-5p was also significantly down-regulated in STZ-mice. Fifteen exosomal miRNAs were upregulated in STZ-mice. Six miRNAs (let-7f-5p, miR-10b-5p, 143-3p, 191-5p, 21a-5p, and 26a-5p) were upregulated, similarly to human HCC cases. From the precancerous state, aberrant expression of hepatic miRNAs has already occurred, and then, it can promote carcinogenesis. In exosomes, the expression pattern of common miRNAs between mice and humans before carcinogenesis was observed and can be expected to be developed as a cancer predictive marker
Brane-bulk energy exchange : a model with the present universe as a global attractor
The role of brane-bulk energy exchange and of an induced gravity term on a
single braneworld of negative tension and vanishing effective cosmological
constant is studied. It is shown that for the physically interesting cases of
dust and radiation a unique global attractor which can realize our present
universe (accelerating and 0<Omega_{m0}<1) exists for a wide range of the
parameters of the model. For Omega_{m0}=0.3, independently of the other
parameters, the model predicts that the equation of state for the dark energy
today is w_{DE,0}=-1.4, while Omega_{m0}=0.03 leads to w_{DE,0}=-1.03. In
addition, during its evolution, w_{DE} crosses the w_{DE}=-1 line to smaller
values.Comment: 8 pages, 2 figures, RevTex; references added, to appear in JHE
Super-acceleration on the Brane by Energy Flow from the Bulk
We consider a brane cosmological model with energy exchange between brane and
bulk. Parameterizing the energy exchange term by the scale factor and Hubble
parameter, we are able to exactly solve the modified Friedmann equation on the
brane. In this model, the equation of state for the effective dark energy has a
transition behavior changing from to , while
the equation of state for the dark energy on the brane has . Fitting data
from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave
Anisotropy Probe, our universe is predicted now in the state of
super-acceleration with .Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references
added, to appear in JCA
LPA5 Is Abundantly Expressed by Human Mast Cells and Important for Lysophosphatidic Acid Induced MIP-1β Release
Background: Lysophosphatidic acid (LPA) is a bioactive lipid inducing proliferation, differentiation as well as cytokine release by mast cells through G-protein coupled receptors. Recently GPR92/LPA5 was identified as an LPA receptor highly expressed by cells of the immune system, which prompted us to investigate its presence and influence on mast cells. Principal Findings: Transcript analysis using quantitative real-time PCR revealed that LPA5 is the most prevalent LPA-receptor in human mast cells. Reduction of LPA5 levels using shRNA reduced calcium flux and abolished MIP-1β release in response to LPA. Conclusions: LPA5 is a bona fide LPA receptor on human mast cells responsible for the majority of LPA induced MIP-1β release
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
Fstl1 Antagonizes BMP Signaling and Regulates Ureter Development
Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling
Impact on cell to plasma ratio of miR-92a in patients with acute leukemia: in vivo assessment of cell to plasma ratio of miR-92a
<p>Abstract</p> <p>Background</p> <p>Plasma microRNA (miRNA) has become a promising biomarker for detecting cancer; however, it remains uncertain whether miRNA expression levels in plasma reflect those in tumor cells. Our aim was to determine the biological relevance of miR-92a, which has been implicated as an oncomiR in both plasma and leukemia cells in patients with acute leukemia and to evaluate whether it could be a novel biomarker for monitoring these patients.</p> <p>Results</p> <p>We quantified the expression level of miR-92a in both cells and plasma by reverse transcription polymerase chain reaction in 91 patients with acute leukemia. We also determined miR-92a expression levels in peripheral blood mononuclear cells (PBMNC) from normal controls. We compared miR-92a expression in plasma with its expression in leukemia cells. Synthetic anti-miR-92a inhibitor was transfected into Raji and OM9;22 cells, and apoptosis was assessed. For in vivo assessment, 6-week-old female nude mice were injected with U937 cells, and miR-92a expression in plasma and tumors was measured. The level of miR-92a expression in fresh leukemia cells was highly variable compared with PBMNC, but significantly lower compared with CD34-positive cells obtained from healthy volunteers. We also noticed that miR-92a was preferentially expressed in acute lymphoblastic leukemia (ALL) cells in comparison with acute myeloid leukemia (AML) cells. More specifically, cellular miR-92a expression was significantly increased in a subset of ALL cells, and ALL patients with overexpressed miR-92a had poor prognoses. The anti-miR-92a inhibitor-treated Raji and OM9;22 cells revealed an increase of apoptotic cells. Notably, the cell to plasma ratio of miR-92a expression was significantly higher in both AML and ALL cells compared with PBMNC from healthy volunteers. In tumor-bearing mice, the plasma miR-92a level was significantly decreased in accordance with tumor growth, while tumor tissue was strongly positive for miR-92a.</p> <p>Conclusions</p> <p>The miR-92a expression in leukemia cells could be a prognostic factor in ALL patients. The inverse correlation of miR-92a expression between cells and plasma and the cell to plasma ratio may be important to understanding the clinical and biological relevance of miR-92a in acute leukemia.</p
Structural basis for inhibition of homologous recombination by the RecX protein
The RecA/RAD51 nucleoprotein filament is central to the reaction of homologous recombination (HR). Filament activity must be tightly regulated in vivo as unrestrained HR can cause genomic instability. Our mechanistic understanding of HR is restricted by lack of structural information about the regulatory proteins that control filament activity. Here, we describe a structural and functional analysis of the HR inhibitor protein RecX and its mode of interaction with the RecA filament. RecX is a modular protein assembled of repeated three-helix motifs. The relative arrangement of the repeats generates an elongated and curved shape that is well suited for binding within the helical groove of the RecA filament. Structure-based mutagenesis confirms that conserved basic residues on the concave side of RecX are important for repression of RecA activity. Analysis of RecA filament dynamics in the presence of RecX shows that RecX actively promotes filament disassembly. Collectively, our data support a model in which RecX binding to the helical groove of the filament causes local dissociation of RecA protomers, leading to filament destabilisation and HR inhibition
- …