3,145 research outputs found
Short-Term Pain and Long-Term Gain: Using Phased-In Minimum Size Limits to Rebuild Stocks-the Pacific Bluefin Tuna Example
Like many stocks, the Pacific Bluefin Tuna Thunnus orientalis has been considerably depleted. High exploitation rates on very young fish have reduced the spawning stock biomass (SSB) to 2.6% of the unexploited level. We provide a framework for exploring potential benefits of minimum size regulations as a mechanism for rebuilding stocks, and we illustrate the approach using simulations patterned after Pacific Bluefin Tuna dynamics. We attempt to mitigate short-term losses in yield by considering a phased-in management strategy. With this approach, the minimum size limit (MSL) is gradually increased as biomass rebuilds, giving fishing communities time to adjust to new restrictions. We estimated short- and long-term effects of different MSLs on yield and biomass by using data from the 2016 assessment. A variety of scenarios was considered for growth compensation, discard mortality, and interest rates. The long-term value of the fishery was maximized by setting an MSL of 92 cm FL, which resulted in a 70% loss in yield during the first year (short-term pain). By implementing the MSL in two phases (64 cm FL in year 1; 92 cm FL in subsequent years), the long-term value of the fishery was maintained, and the short-term pain was reduced to a maximum 46% loss in yield during any 1 year. Under a three-phase implementation (55 cm FL in year 1; 77 cm FL in year 2; and 92 cm FL in subsequent years), the short-term pain was further reduced to a maximum loss of 30% during any 1 year. With no discard mortality, long-term yield increased by 165% and SSB increased 13-fold (to 33% of virgin SSB), regardless of the number of phases used. Long-term benefits were quickly diminished with increasing discard mortality. This simulation approach is widely applicable to cases where minimum size changes are contemplated; for Pacific Bluefin Tuna, our simulations demonstrate that size limits should be considered
Optical feedback radiation forces: Intracavity optical trapping with feedback-locked diode lasers
We demonstrate a novel mechanism for optical tweezing, where a trapped particle dynamically alters an external cavity quality factor, reduceing the average intensity and photodamage, even employing low-numerical aperture lenses and wide fields-of-view. © OSA 2012
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Fragmentation branching ratios of highly excited hydrocarbon molecules CnH and their cations CnH+ (n<4)
We have measured fragmentation branching ratios of neutral CnH and CnH+
cations produced in high velocity (4.5 a.u) collisions between incident CnH+
cations and helium atoms. Electron capture gives rise to excited neutral
species CnH and electronic excitation to excited cations CnH+. Thanks to a
dedicated set-up, based on coincident detection of all fragments, the
dissociation of the neutral and cationic parents were recorded separately and
in a complete way. For the fragmentation of CnH, the H-loss channel is found to
be dominant, as already observed by other authors. By contrast, the H-loss and
C-loss channels equally dominate the two-fragment break up of CnH+ species. For
these cations, we provide the first fragmentation data (n > 2). Results are
also discussed in the context of astrochemistry
Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms
Motivation :Reconstructing the topology of a gene regulatory network is one
of the key tasks in systems biology. Despite of the wide variety of proposed
methods, very little work has been dedicated to the assessment of their
stability properties. Here we present a methodical comparison of the
performance of a novel method (RegnANN) for gene network inference based on
multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER),
focussing our analysis on the prediction variability induced by both the
network intrinsic structure and the available data.
Results: The extensive evaluation on both synthetic data and a selection of
gene modules of "Escherichia coli" indicates that all the algorithms suffer of
instability and variability issues with regards to the reconstruction of the
topology of the network. This instability makes objectively very hard the task
of establishing which method performs best. Nevertheless, RegnANN shows MCC
scores that compare very favorably with all the other inference methods tested.
Availability: The software for the RegnANN inference algorithm is distributed
under GPL3 and it is available at the corresponding author home page
(http://mpba.fbk.eu/grimaldi/regnann-supmat
II.2 Description of processes and corrections from observation to delivery
This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered
Cell arrest and cell death in mammalian preimplantation development
The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue.
To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances.
In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
Control of zeolite microenvironment for propene synthesis from methanol
Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbonâcarbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbonâcarbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and BrĂžnsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.We thank EPSRC (EP/P011632/1), the Royal Society, National Natural Science Foundation of China (21733011, 21890761, 21673076), and the University of Manchester for funding. We thank EPSRC for funding and the EPSRC National Service for EPR Spectroscopy at Manchester. A.M.S. is supported by a Royal Society Newton International Fellowship. We are grateful to the STFC/ISIS Facility, Oak Ridge National Laboratory (ORNL) and Diamond Light Source (DLS) for access to the beamlines TOSCA/MAPS, VISION and I11/I20, respectively. We acknowledge Dr. L. Keenan for help at I20 beamline (SP23594-1). UK Catalysis Hub is kindly thanked for resources and support provided via our membership of the UK Catalysis Hub Consortium and funded by EPSRC grant: EP/R026939/1, EP/R026815/1, EP/R026645/1, EP/R027129/1 or EP/M013219/1 (biocatalysis). We acknowledge the support of The University of Manchesterâs Dalton Cumbrian Facility (DCF), a partner in the National Nuclear User Facility, the EPSRC UK National Ion Beam Centre and the Henry Royce Institute. We recognise Dr. R. Edge and Dr. K. Warren for their assistance during the 60Co Îł-irradiation processes. We thank Prof. A. Jentys from the Technical University of Munich for the measurement of the INS spectrum of iso-butene. We thank C. Webb, E. Enston and G. Smith for help with GCâMS; Dr. L. Hughes for help with SEM and EDX; M. Kibble for help at TOSCA/MAPS beamlines. Computing resources (time on the SCARF compute cluster for some of the CASTEP calculations) was provided by STFCâs e-Science facility. A portion of this research used resources at the Spallation
Neutron Source, a DOE Office of Science User Facility operated by ORNL. The computing
resources at ORNL were made available through the VirtuES and the ICE-MAN projects,
funded by Laboratory Directed Research and Development programme and Compute and
Data Environment for Science (CADES
Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells
Here, we propose crystalline indium tin oxide/metal nanowire composite electrode (c-ITO/metal NW-GFRHybrimer) films as a robust platform for flexible optoelectronic devices. A very thin c-ITO overcoating layer was introduced to the surface-embedded metal nanowire (NW) network. The c-ITO/metal NW-GFRHybrimer films exhibited outstanding mechanical flexibility, excellent optoelectrical properties and thermal/chemical robustness. Highly flexible and efficient metal halide perovskite solar cells were fabricated on the films. The devices on the c-ITO/AgNW- and c-ITO/CuNW-GFRHybrimer films exhibited power conversion efficiency values of 14.15% and 12.95%, respectively. A synergetic combination of the thin c-ITO layer and the metal NW mesh transparent conducting electrode will be beneficial for use in flexible optoelectronic applications
- âŠ