23 research outputs found
LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning
We present a novel procedural framework to generate an arbitrary number of
labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to
design accurate algorithms or training models for crowded scene understanding.
Our overall approach is composed of two components: a procedural simulation
framework for generating crowd movements and behaviors, and a procedural
rendering framework to generate different videos or images. Each video or image
is automatically labeled based on the environment, number of pedestrians,
density, behavior, flow, lighting conditions, viewpoint, noise, etc.
Furthermore, we can increase the realism by combining synthetically-generated
behaviors with real-world background videos. We demonstrate the benefits of
LCrowdV over prior lableled crowd datasets by improving the accuracy of
pedestrian detection and crowd behavior classification algorithms. LCrowdV
would be released on the WWW