406 research outputs found

    Impact of the flush discharge from a dam on the biotic and abiotic river environment

    Get PDF
    River engineeringRiver habitat management and restoratio

    Small Scale Clustering in the Isotropic Arrival Distribution of Ultra-High Energy Cosmic Rays and Implications for Their Source Candidates

    Full text link
    We present numerical simulations on the propagation of UHE protons with energies of (1019.5−1022)(10^{19.5}-10^{22}) eV in extragalactic magnetic fields over 1 Gpc. We use the ORS galaxy sample, which allow us to accurately quantify the contribution of nearby sources to the energy spectrum and the arrival distribution, as a source model. We calculate three observable quantities, cosmic ray spectrum, harmonic amplitude, and two point correlation function from our data of numerical simulations. With these quantities, we compare the results of our numerical calculations with the observation. We show that the three observable quantities including the GZK cutoff of the energy spectrum can be reproduced in the case that the number fraction ∌10−1.7\sim 10^{-1.7} of the ORS galaxies more luminous than -20.5 mag is selected as UHECR sources. In terms of the source number density, this constraint corresponds to 10−610^{-6} Mpc−3^{-3}. However, since mean number of sources within the GZK sphere is only ∌0.5\sim 0.5 in this case, the AGASA 8 events above 1020.010^{20.0} eV, which do not constitute the clustered events with each other, can not be reproduced. On the other hand, if the cosmic ray flux measured by the HiRes, which is consistent with the GZK cutoff, is correct and observational features about the arrival distribution of UHECRs are same as the AGASA, our source model can explain both the arrival distribution and the flux at the same time. Thus, we conclude that large fraction of the AGASA 8 events above 102010^{20} eV might originate in the topdown scenarios, or that the cosmic ray flux measured by the HiRes experiment might be better. We also discuss the origin of UHECRs below 1020.010^{20.0} eV through comparisons between the number density of astrophysical source candidates and our result (∌10−6\sim 10^{-6} Mpc−3^{-3}).Comment: 17 pages, 22 figures, 1 table. accepted version for publication in the Astrophysical Journa

    DD-4 Synthesis of Planar Microwave Band-pass Filter based on Foster-type Network and Normal Mode Expansion Method

    Get PDF
    A new synthesis method of microwave filter circuit based on the Foster-type network representation is proposed, where two port impedance matrix which realizes the desired frequency characteristics and that of any microwave circuit structure are expanded into Foster-type network representation; microwave filter circuit can be synthesizedby matching the both network representation. In this paper fundamental idea of synthesis method and practical examples are explained.1992 IEEE MTT-S International Microwave Symposium Digest, June 1-5, 1992, Albuquerque Convention Center, Albuquerque, New Mexic

    Damping mechanisms for oscillations in solar prominences

    Full text link
    Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also present. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Dihydrolipoic acid reduces cytochrome b561 proteins.

    Get PDF
    Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins

    Adverse Effects of Methylmercury: Environmental Health Research Implications

    Get PDF
    Background: The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective: Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction: We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis: At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions: Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation

    Adverse Effects of Methylmercury: Environmental Health Research Implications

    Get PDF
    Background: The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective: Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction: We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis: At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions: Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation
    • 

    corecore