74 research outputs found

    Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results

    Full text link
    We consider the pair correlation functions of both the order parameter field and its square for phase ordering in the O(n)O(n) model with nonconserved order parameter, in spatial dimension 2d32\le d\le 3 and spin dimension 1nd1\le n\le d. We calculate, in the scaling limit, the exact short-distance singularities of these correlation functions and compare these predictions to numerical simulations. Our results suggest that the scaling hypothesis does not hold for the d=2d=2 O(2)O(2) model. Figures (23) are available on request - email [email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2

    Growth Laws for Phase Ordering

    Full text link
    We determine the characteristic length scale, L(t)L(t), in phase ordering kinetics for both scalar and vector fields, with either short- or long-range interactions, and with or without conservation laws. We obtain L(t)L(t) consistently by comparing the global rate of energy change to the energy dissipation from the local evolution of the order parameter. We derive growth laws for O(n) models, and our results can be applied to other systems with similar defect structures.Comment: 12 pages, LaTeX, second tr

    Phase ordering in bulk uniaxial nematic liquid crystals

    Full text link
    The phase-ordering kinetics of a bulk uniaxial nematic liquid crystal is addressed using techniques that have been successfully applied to describe ordering in the O(n) model. The method involves constructing an appropriate mapping between the order-parameter tensor and a Gaussian auxiliary field. The mapping accounts both for the geometry of the director about the dominant charge 1/2 string defects and biaxiality near the string cores. At late-times t following a quench, there exists a scaling regime where the bulk nematic liquid crystal and the three-dimensional O(2) model are found to be isomorphic, within the Gaussian approximation. As a consequence, the scaling function for order-parameter correlations in the nematic liquid crystal is exactly that of the O(2) model, and the length characteristic of the strings grows as t1/2t^{1/2}. These results are in accord with experiment and simulation. Related models dealing with thin films and monopole defects in the bulk are presented and discussed.Comment: 21 pages, 3 figures, REVTeX, submitted to Phys. Rev.

    The Energy-Scaling Approach to Phase-Ordering Growth Laws

    Full text link
    We present a simple, unified approach to determining the growth law for the characteristic length scale, L(t)L(t), in the phase ordering kinetics of a system quenched from a disordered phase to within an ordered phase. This approach, based on a scaling assumption for pair correlations, determines L(t)L(t) self-consistently for purely dissipative dynamics by computing the time-dependence of the energy in two ways. We derive growth laws for conserved and non-conserved O(n)O(n) models, including two-dimensional XY models and systems with textures. We demonstrate that the growth laws for other systems, such as liquid-crystals and Potts models, are determined by the type of topological defect in the order parameter field that dominates the energy. We also obtain generalized Porod laws for systems with topological textures.Comment: LATeX 18 pages (REVTeX macros), one postscript figure appended, REVISED --- rearranged and clarified, new paragraph on naive dimensional analysis at end of section I

    Relaxation and Coarsening Dynamics in Superconducting Arrays

    Full text link
    We investigate the nonequilibrium coarsening dynamics in two-dimensional overdamped superconducting arrays under zero external current, where ohmic dissipation occurs on junctions between superconducting islands through uniform resistance. The nonequilibrium relaxation of the unfrustrated array and also of the fully frustrated array, quenched to low temperature ordered states or quasi-ordered ones, is dominated by characteristic features of coarsening processes via decay of point and line defects, respectively. In the case of unfrustrated arrays, it is argued that due to finiteness of the friction constant for a vortex (in the limit of large spatial extent of the vortex), the typical length scale grows as st1/2\ell_s \sim t^{1/2} accompanied by the number of point vortices decaying as Nv1/tN_v \sim 1/t . This is in contrast with the case that dominant dissipation occurs between each island and the substrate, where the friction constant diverges logarithmically and the length scale exhibits diffusive growth with a logarithmic correction term. We perform extensive numerical simulations, to obtain results in reasonable agreement. In the case of fully frustrated arrays, the domain growth of Ising-like chiral order exhibits the low-temperature behavior qt1/zq\ell_q \sim t^{1/z_q}, with the growth exponent 1/zq1/z_q apparently showing a strong temperature dependence in the low-temperature limit.Comment: 9 pages, 5 figures, to be published in Phys. Rev.

    Nonequilibrium Dynamics in the Complex Ginzburg-Landau Equation

    Get PDF
    We present results from a comprehensive analytical and numerical study of nonequilibrium dynamics in the 2-dimensional complex Ginzburg-Landau (CGL) equation. In particular, we use spiral defects to characterize the domain growth law and the evolution morphology. An asymptotic analysis of the single-spiral correlation function shows a sequence of singularities -- analogous to those seen for time-dependent Ginzburg-Landau (TDGL) models with O(n) symmetry, where nn is even.Comment: 11 pages, 5 figure

    Dynamics of orientational ordering in fluid membranes

    Get PDF
    We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of membrane curvature. The growth of the orientational correlation length ξ\xi obeys a power law ξtw\xi \propto t^w with w<1/4w < 1/4 in the late stage. We also discuss defect profiles and correlation patterns in terms of long-range interaction mediated by curvature elasticity.Comment: 5 pages, 3 figures (1 in color); Eq.(9) correcte

    Grain boundary pinning and glassy dynamics in stripe phases

    Full text link
    We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the non-adiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value $R_g \sim \lambda_0\ \epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon}),where, where \epsilon\ll 1isthedimensionlessdistanceawayfromthreshold, is the dimensionless distance away from threshold, \lambda_0thestripewavelength,and the stripe wavelength, and a$ a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur

    Dynamical Scaling: the Two-Dimensional XY Model Following a Quench

    Full text link
    To sensitively test scaling in the 2D XY model quenched from high-temperatures into the ordered phase, we study the difference between measured correlations and the (scaling) results of a Gaussian-closure approximation. We also directly compare various length-scales. All of our results are consistent with dynamical scaling and an asymptotic growth law L(t/ln[t/t0])1/2L \sim (t/\ln[t/t_0])^{1/2}, though with a time-scale t0t_0 that depends on the length-scale in question. We then reconstruct correlations from the minimal-energy configuration consistent with the vortex positions, and find them significantly different from the ``natural'' correlations --- though both scale with LL. This indicates that both topological (vortex) and non-topological (``spin-wave'') contributions to correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.Comment: 10 pages, 10 figure

    Phase Ordering Kinetics with External Fields and Biased Initial Conditions

    Full text link
    The late-time phase-ordering kinetics of the O(n) model for a non-conserved order parameter are considered for the case where the O(n) symmetry is broken by the initial conditions or by an external field. An approximate theoretical approach, based on a `gaussian closure' scheme, is developed, and results are obtained for the time-dependence of the mean order parameter, the pair correlation function, the autocorrelation function, and the density of topological defects [e.g. domain walls (n=1n=1), or vortices (n=2n=2)]. The results are in qualitative agreement with experiments on nematic films and related numerical simulations on the two-dimensional XY model with biased initial conditions.Comment: 35 pages, latex, no figure
    corecore