11 research outputs found
Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies
The formation of alpha-clusters in nuclei close to the decay thresholds is
discussed. These states can be considered to be boson-condensates, which are
formed in a second order phase transition in a mixture of nucleons and
alpha-particles. The de Broglie wavelength of the alpha-particles is larger
than the nuclear diameter, therefore the coherent properties of the
alpha-particles give particular effects for the study of such states. The
states are above the thresholds thus the enhanced emission of multiple-alphas
into the same direction is observed. The probability for the emission of
multiple-alphas is not described by Hauser-Feshbach theory for compound nucleus
decay.Comment: 21 pages, 12 figures
Highly deformed Ca configurations in Si + C
The possible occurrence of highly deformed configurations in the Ca
di-nuclear system formed in the Si + C reaction is investigated
by analyzing the spectra of emitted light charged particles. Both inclusive and
exclusive measurements of the heavy fragments (A 10) and their
associated light charged particles (protons and particles) have been
made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding
energies of Si) = 112 MeV and 180 MeV by using the {\sc ICARE}
charged particle multidetector array. The energy spectra, velocity
distributions, and both in-plane and out-of-plane angular correlations of light
charged particles are compared to statistical-model calculations using a
consistent set of parameters with spin-dependent level densities. The analysis
suggests the onset of large nuclear deformation in Ca at high spin.Comment: 33 pages, 11 figure
Search for cluster structure of excited states in 14C
We have studied three different 2n transfer reactions on a 12C target, the 2p pick up reaction on 16O and the 5He transfer in the reaction 9Be 7Li,d 14C. Combined with a systematic search through experimental results for transfer reactions, inelastic excitations and other data, we have established an almost complete spectroscopy for 14C up to 18 MeV excitation. We identify states with single particle structure that have oblate shapes and states corresponding to proton excitations that are connected to oblate triangular cluster states. Further we list states of prolate shape which have no simple structure related to the low lying oblate states of 12C. These are proposed to have strong clustering and to form rotational bands as a parity inversion doublet, with high moment of inertia. With these results it is possible for the first time to identify chain states expected in the isotope 14